Skip to main content

Zea mays

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Abdel-Wahab SM, El-Tanbouly ND, Kassem HA, Mohamed EA (2002) Phytochemical and biological study of corn silk (styles and stigmas of Zea mays L.). Bull Fac Pharm Cairo Univ 40:93–102

    CAS  Google Scholar 

  • Abo KA, Fred-Jaiyesimi AA, Jaiyessimi AEA (2008) Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J Ethnopharmacol 115:67–71

    Article  PubMed  CAS  Google Scholar 

  • Adjanohoun EJ, Ahyi MRA, Aké Assi L, Akpagana K, Chibon P, El-Adji A, Eymé J, Garba M, Gassita JN, Gbeassor M, Goudote E, Guinko S, Hodouto KK, Houngnon P, Keita A, Keoula Y, Hodouto WP, Issa Lo A, Siamevi KM, Taffame KK (1986) Contributions aux Études Ethnobotaniques et Floristiques au Togo. Médecine Traditionelle et Pharmacopée Agence de Coopération Culturelle et Technique, Paris, 671 pp

    Google Scholar 

  • Adjanohoun EJ, Adjakidjè V, Ahyi MRA, Aké Assi L, Akoègninou A, d’Almeida J, Apovo F, Boukef K, Chadare M, Cusset G, Dramane K, Eyme J, Gassita JN, Gbaguidi N, Goudote E, Guinko S, Houngnon P, Lo I, Keita A, Kiniffo HV, Kone-Bamba D, Musampa Nseyya A, Saadou M, Sodogandji T, De Souza S, Tchabi A, Zinsou Dossa C, Zohoun T (1989) Contribution aux Études Ethnobotaniques et Floristiques en République Populaire du Bénin. Médecine Traditionelle et Pharmacopée. Agence de Coopération Culturelle et Technique, Paris, 895 pp

    Google Scholar 

  • Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6168–6187

    Article  CAS  Google Scholar 

  • Agyare C, Asase A, Lechtenberg M, Niehues M, Deters A, Hensl A (2009) An Ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Gosomtwi-Atwima-Kwanwoma area, Ghana. J Ethnopharmacol 125:393–403

    Article  PubMed  Google Scholar 

  • Akgün S, Ertel NH (1981) Plasma glucose and insulin after fructose an high-fructose corn syrup meals in subjects with non-insulin-dependent diabetes mellitus. Diabetes Care 4(4):464–467

    Article  PubMed  Google Scholar 

  • Akgün S, Ertel NH (1985) The effects of sucrose, fructose, and high-fructose corn syrup meals on plasma glucose and insulin in non-insulin-dependent diabetic subjects. Diabetes Care 8(3):279–283

    Article  PubMed  Google Scholar 

  • Badu-Apraku B, Fakorede MAB (2006) Zea mays L. [Internet] Record from Protabase. In: Brink M, Belay G (eds) PROTA (Plant resources of Tropical Africa/Ressources végétales de l’Afrique tropicale). Wageningen. http://database.prota.org/search.htm

  • Baerts M, Lehmann J (1989) Guérisseurs et plantes médicinales de la région des crêtes Zaïre-Nil au Burundi. Musée royal de l’Afrique centrale, Tervuren, Belgique. Annu Sci Ecol 18:214 (in French)

    Google Scholar 

  • Bah S, Diallo D, Dembélé S, Paulsen BS (2006) Ethnopharmacological survey of plants used for the treatment of schistosomiasis in Niono district, Mali. J Ethnopharmacol 105:387–399

    Article  PubMed  Google Scholar 

  • Bai H, Hai C, Xi M, Liang X, Liu R (2010) Protective effect of maize silks (Maydis stigma) ethanol extract on radiation-induced oxidative stress in mice. Plant Foods Hum Nutr 65(3):271–276

    Article  PubMed  Google Scholar 

  • Bellakhdar J (1997) La pharmacopée marocaine traditionnelle: Médecine arabe ancienne et savoirs populaires. Ibis Press, Paris, 764 pp

    Google Scholar 

  • Ben Saï S (1944) Médecine indigène et plantes médicinales au Soudan. Notes Afr 21:6–8

    Google Scholar 

  • Beunzel M, Ralph J, Marita JM, Hatfield RD, Steinhart H (2001) Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric 81(7):653–660

    Article  Google Scholar 

  • Birch CJ, Robertson MJ, Humphreys E, Hutchins N (2003) Agronomy of maize in Australia: in review and prospect. In: Birch CJ, Wilson SR (eds) The proceedings of the Versatile Maize – golden opportunities. 5th Australian maize conference, City Gold Club, Toowoomba, 18–20 Feb 2003, pp 45–57

    Google Scholar 

  • Boyer CD, Hannah LC (1964) Chapter 1: Kernel mutants of corn. In: Hallauer AR (ed) Specialty corns. CRC Press Inc., Boca Raton, pp 1–28

    Google Scholar 

  • Brites CM, Trigo MJ, Carrapiço B, Alviña M, Bessa RJ (2011) Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Nutr Res 31(4):302–308

    Article  PubMed  CAS  Google Scholar 

  • Buchmann CA, Nersesyan A, Kopp B, Schauberger D, Darroudi F, Grummt T, Krupitza G, Kundi M, Schulte-Hermann R, Knasmueller S (2007) Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), two naturally occurring benzoxazinones contained in sprouts of Gramineae are potent aneugens in human-derived liver cells (HepG2). Cancer Lett 246(1–2):290–299

    Article  PubMed  CAS  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula, revised reprint, 2 vols. Ministry of Agriculture and Co-operatives, Kuala Lumpur. Vol 1 (A–H), pp 1–1240, vol 2 (I–Z), pp 1241–2444

    Google Scholar 

  • Burkill HM (1994) The useful plants of West Tropical Africa, vol 2, Families E to I. Royal Botanic Gardens, Kew/Richmond, 636 pp

    Google Scholar 

  • Cambier V, Hance T, de Hoffmann E (2000) Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53(2):223–229

    Article  PubMed  CAS  Google Scholar 

  • Cantelo WW, Jacobson M (1979) Corn silk volatiles attract many pest species of moths. J Environ Sci Health Part A Environ Sci Eng 14(8):695–707

    Article  Google Scholar 

  • Carvalho-Wells AL, Helmolz K, Nodet C, Molzer C, Leonard C, McKevith B, Thielecke F, Jackson KG, Tuohy KM (2010) Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr 104(9):1353–1356

    Article  PubMed  CAS  Google Scholar 

  • Chance GW, Albutt EC, Edkins SM (1969) Control of hyperlipidaemia in juvenile diabetes. Standard and corn-oil diets compared over a period of 10 years. Br Med J 3(5671):616–618

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Phillips SM (2000) Zea Linnaeus. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 22, Poaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  • Choi SK, Choi HS (2004) Purification and characterization of an anticoagulant from corn silk. J Korean Soc Food Sci Nutr 33(8):1262–1267

    Article  CAS  Google Scholar 

  • Clayton WD, Harman KT, Williamson H (2006) Onwards. GrassBase – the online world grass flora. http://www.kew.org/data/grasses-db.html

  • Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M (2011) World checklist of Poaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://apps.kew.org/wcsp/. Retrieved 18 Aug 2011

  • Colless JM (1992) Maize growing. Report No. P3.3.3 – Agdex 111, 2nd edn. NSW Agriculture Grafton, NSW

    Google Scholar 

  • Corcuera LJ, Woodward MD, Helgeson JP, Kelman A, Upper CD (1978) 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiol 61(5):791–795

    Article  PubMed  CAS  Google Scholar 

  • Cuevas Montilla E, Hillebrand S, Antezana A, Winterhalter P (2011) Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. J Agric Food Chem 59(13):7068–7074

    Article  PubMed  CAS  Google Scholar 

  • Darrah LL, McMullen MD, Zuber MS (2003) Breeding, genetic, and seed corn production. In: White PJ, Johnson LA (eds) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, 892 pp

    Google Scholar 

  • Davis DL, Poneleit CG (1974) Sterol accumulation and composition in developing Zea mays L. kernels. Plant Physiol 54:794–796

    Article  PubMed  CAS  Google Scholar 

  • Dobberstein D, Bunzel M (2010) Separation and detection of cell wall-bound ferulic acid dehydrodimers and dehydrotrimers in cereals and other plant materials by reversed phase high-performance liquid chromatography with ultraviolet detection. J Agric Food Chem 58(16):8927–8935

    Article  CAS  Google Scholar 

  • Duke JA, Bogenschuts-Godwin MJ, du Cellier J, Duke P-AK (2002) CRC handbook of medicinal herbs, 2nd edn. CRC Press, Boca Raton, 896 pp

    Book  Google Scholar 

  • Duvick JP, Rood T, Rao AG, Marshak DR (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267(26):18814–18820

    PubMed  CAS  Google Scholar 

  • Ebrahimzadeh MA, Pourmorad F, Hafezi S (2008) Antioxidant activities of Iranian corn silk. Turk J Biol 32:43–49

    CAS  Google Scholar 

  • El-Ghorab A, El-Massry KF, Shibamoto K (2007) Chemical composition of the volatile extract andantioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). J Agric Food Chem 55(22):9124–9127

    Article  PubMed  CAS  Google Scholar 

  • Elliger CA, Chan BG, Waiss AC Jr, Lundin RE, Haddon WF (1980) C-glycosylflavones from Zea mays that inhibit insect development. Phytochemistry 19:293–297

    Article  CAS  Google Scholar 

  • Feng YZ, Lu XH, Tao B, Pang MH, Liu YC, Dong JG (2011) Natural occurrence of fumonisins b1 and b2 in corn from three main production provinces in China. J Food Prot 74(8):1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Flath RA, Forrey RR, John JO, Chan BG (1978) Volatile components of corn silk (Zea mays L.): possible Heliothis zea (Boddie) attractants. J Agric Food Chem 26(6):1290–1293

    Article  CAS  Google Scholar 

  • Foundation for Revitalisation of Local Health Traditions (2008) FRLHT database. htttp://envis.frlht.org

  • Godier A, Durand M, Smadja D, Jeandel T, Emmerich J, Samama CM (2010) Maize- or potato-derived hydroxyethyl starches: is there any thromboelastometric difference? Acta Anaesthesiol Scand 54(10):1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Gong HZ, Ji R, Li YX, Zhang HY, Li B, Zhao Y, Sun L, Yu F, Yang J (2009) Occurrence of fumonisin B(1) in corn from the main corn-producing areas of China. Mycopathologia 167(1):31–36

    Article  PubMed  Google Scholar 

  • Granfeldt Y, Drews A, Björck I (1995) Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. J Nutr 125(3):459–465

    PubMed  CAS  Google Scholar 

  • Grases F, March JG, Ramis M, Costa-Bauza A (1993) The influence of Zea mays on urinary risk factors for kidney stones in rats. Phytother Res 7:146–149

    Article  Google Scholar 

  • Grieve M (1971) A modern herbal, 2 vols. Penguin/Dover Publications, New York, 919 pp

    Google Scholar 

  • Guevara P, Perez-Amador MC, Zuniga B, Snook M (2000) Flavones in corn silks and resistance to insect attacks. Phyton 69:151–156

    CAS  Google Scholar 

  • Guo JY, Liu TJ, Han LN, Liu YM (2009) The effects of corn silk on glycaemic metabolism. Nutr Metab (Lond) 6:47

    Article  CAS  Google Scholar 

  • Habtemariam S (1998) Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Med 64(4):314–318

    Article  PubMed  CAS  Google Scholar 

  • Haghi G, Arshi R, Safaei A (2008) Improved high-performance liquid chromatography (HPLC) method for qualitative and quantitative analysis of allantoin in Zea mays. J Agric Food Chem 56(4):1205–1209

    Article  PubMed  CAS  Google Scholar 

  • Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals), 1st English edn. Springer, Berlin, 3645 pp

    Google Scholar 

  • Hanway JJ (1966) How a corn plant develops. Special Report 48. Iowa State University, Ames, 17 pp

    Google Scholar 

  • Hirt HM, Bindanda M (1993) La médecine naturelle en Afrique. Comment se soigner par les plantes tropicales. Editions Centre de vulgarisation agricole, Kinshasa 2, République du Zaïre, 144 pp

    Google Scholar 

  • Hu QL, Deng ZH (2011) Protective effects of flavonoids from corn silk on oxidative stress induced by exhaustive exercise in mice. Afr J Biotechnol 10(16):3163–3167

    CAS  Google Scholar 

  • Hu QP, Xu JG (2011) Profiles of carotenoids, anthocyanins, phenolics, and antioxidant activity of selected color waxy corn grains during maturation. J Agric Food Chem 59(5):2026–2033

    Article  PubMed  CAS  Google Scholar 

  • Hu QL, Zhang LJ, Ding YJ, Li FL (2010) Purification and anti-fatigue activity of flavonoids from corn silk. Int J Phys Sci 5(4):321–326

    CAS  Google Scholar 

  • Hung CT (1989) Effects of high-fructose (90%) corn syrup on plasma glucose, insulin, and C-peptide in non-insulin-dependent diabetes mellitus and normal subjects. Taiwan Yi Xue Hui Za Zhi 88(9):883–885

    PubMed  CAS  Google Scholar 

  • Hutton JC, Schofield PH, Williams JF, Regtop HL, Hollows FC (1976) The effect of an unsaturated-fat diet on cataract formation in streptozotocin-induced diabetic rats. Br J Nutr 36(2):161–177

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Ouattar S, Crookston RK (1984) Thermal environment during endosperm cell division and grain filling in maize: effects on kernel growth and development in vitro. Crop Sci 24:133–137

    Article  Google Scholar 

  • Jones RJ, Roessler J, Outtar S (1985) Thermal environment during endosperm cell division in maize: effects on number of endosperm cells and starch granules. Crop Sci 25:830–834

    Article  Google Scholar 

  • Jouad H, Haloui M, Rhiouani H, El-Hilaly J, Eddouks M (2001) Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre of Morocco (Fez-Boulemane). J Ethnopharmacol 77:175–182

    Article  PubMed  CAS  Google Scholar 

  • Kaddah MT, Ghowali SI (1964) Salinity effects on the growth of corn at different stages of development. Agron J 56:214–217

    Article  CAS  Google Scholar 

  • Kayode JL, Aleshinloye L, Ige OE (2008) Ethnomedicinal use of plant species in Ijesa Land of Osun State, Nigeria. Ethnobot Leafl 12:164–170

    Google Scholar 

  • Kays SJ (2011) Cultivated vegetables of the world: a multilingual Onomasticon. Wageningen Academic Publishers, Wageningen. 828 pp. http://www.wageningenacademic.com/_clientfiles/more/worldvegetables_intro_sample.pdf

  • Kerharo J, Adam JG (1964) Plantes médicinales et toxiques des Peuls et des Toucouleurs du Sénégal. J Agric Trop Bot Appl 11:384–444; 543–599 (in French)

    Google Scholar 

  • Kerharo J, Bouquet A (1950) Plantes Médicinales et Toxiques de la Côte d’Ivoire – Haute-Volta. Vigot Frères, Paris, 291 pp

    Google Scholar 

  • Kim WK, Chung MK, Kang NE, Kim MH, Park OJ (2003) Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. J Nutr Biochem 14(3):166–172

    Article  PubMed  CAS  Google Scholar 

  • King RC, Dobree JH, Kok D, Foulds WS, Dangerfield WG (1963) Exudative diabetic retinopathy. Spontaneous changes and effects of a corn oil diet. Br J Ophthalmol 47:666–672

    Article  PubMed  CAS  Google Scholar 

  • Koopmans A, ten Have H, Subandi (1996) Zea mays L. In: Grubben GJH, Partohardjono S (eds) Plant resources of South-East Asia No 10. Cereals. Backhuys Publishers, Leiden, pp 143–149

    Google Scholar 

  • Kuhnen S, Lemos PM, Campestrini LH, Ogliari JB, Dias PF, Maraschin M (2011) Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. J Sci Food Agric 91(9):1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47(5):1948–1955

    Article  PubMed  CAS  Google Scholar 

  • Kwag JJ, Lee JG, Jang HJ, Kim OC (1999) Volatile components of corn silk (Zea mays L.). Korean J Food Nutr 12:375–379

    CAS  Google Scholar 

  • Larsen E, Christensen LP (2000) Simple method for large scale isolation of the cyclic arylhydroxamic acid DIMBOA from maize (Zea mays L.). J Agric Food Chem 48(6):2556–2558

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Garcia HS, Parkin KL (2010) Bioactivities of kernel extracts of 18 strains of maize (Zea mays). J Food Sci 75(8):C667–C672

    Article  PubMed  CAS  Google Scholar 

  • Li FL, Yu L (2009) Flavonoids extraction from maize silk and its function on blood sugar control. China Food Addit 94:121–124

    Google Scholar 

  • Li W, Wei CV, White PJ, Beta T (2007) High-amylose corn exhibits better antioxidant activity than typical and waxy genotypes. J Agric Food Chem 55(2):291–298

    Article  PubMed  CAS  Google Scholar 

  • Li S, Nugroho A, Rocheford T, White WS (2010) Vitamin A equivalence of the ß-carotene in ß-carotene-biofortified maize porridge consumed by women. Am J Clin Nutr 92(5):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Lin M, Chu QC, Tian XH, Ye JN (2007) Determination of active ingredients in corn silk, leaf, and kernel by capillary electrophoresis with electrochemical detection. J Capill Electrophor Microchip Technol 10(3–4):51–56

    PubMed  CAS  Google Scholar 

  • Liu J, Wang CN, Wang ZZ, Zhang C, Lu S, Liu JB (2011) The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem 126(1):61–69

    Article  CAS  Google Scholar 

  • Lopez-Martinez LX, Parkin KL, Garcia HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66(1):41–47

    Article  PubMed  CAS  Google Scholar 

  • Maksimovic ZA, Kovacevic N (2003) Preliminary assay on the antioxidative activity of Maydis stigma extracts. Fitoterapia 74(1–2):144–147

    Article  PubMed  CAS  Google Scholar 

  • Maksimović Z, Malenović A, Jancić B, Kovacević N (2004) Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection. Pharmazie 59(7):524–527

    PubMed  Google Scholar 

  • Marcocci L, Casadei M, Faso C, Antoccia A, Stano P, Leone S, Mondovì B, Federico R, Tavladoraki P (2008) Inducible expression of maize polyamine oxidase in the nucleus of MCF-7 human breast cancer cells confers sensitivity to etoposide. Amino Acids 34(3):403–412

    Article  PubMed  CAS  Google Scholar 

  • Melanson KJ, Zukley L, Lowndes J, Nguyen V, Angelopoulos TJ, Rippe JM (2007) Effects of ­high-fructose corn syrup and sucrose consumption on ­circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 23(2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Miao MS, Zhang GL, Miao YY, Shi JJ, Liu HL (2008) Influence of Zea mays L. saponin (ZMLS) on ultrastructure of kidney and pancreas in diabetes rats induced by streptozocin. Zhongguo Zhong Yao Za Zhi 33(10):1179–1183 (in Chinese)

    PubMed  Google Scholar 

  • Midoh N, Tanaka A, Nagayasu M, Furuta C, Suzuki K, Ichikawa T, Isomura T, Nomura K (2010) Antioxidative activities of Oxindole-3-acetic acid derivatives from supersweet corn powder. Biosci Biotechnol Biochem 74(9):1794–1801

    Article  PubMed  CAS  Google Scholar 

  • Miller SS, Reid LM, Butler G, Winter SP, McGoldrick NJ (2003) Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. J Agric Food Chem 51(23):6702–6708

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki M, Shigemura H, Hasegawa N (2010) Anti-inflammatory effect of enzymatic hydrolysate of corn gluten in an experimental model of colitis. J Pharm Pharmacol 62(3):389–392

    Article  PubMed  CAS  Google Scholar 

  • Monjardino P, Smith AG, Jones RJ (2005) Heat stress on protein accumulation of maize endosperm. Crop Sci 45(4):1203–1210

    Article  CAS  Google Scholar 

  • Monjardino P, Smith AG, Jones RJ (2006) Zein transcription and endoreduplication in maize endosperm are differentially affected by heat stress. Crop Sci 46(3):2581–2589

    Article  CAS  Google Scholar 

  • Moreno-Loaiza O, Paz-Aliaga A (2010) Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat. Rev Peru Med Exp Salud Publica 27(4):527–531 (in Spanish)

    Article  PubMed  Google Scholar 

  • Mosier NS (2006) Cellulosic ethanol – biofuel beyond corn. ID-335, Purdue University Cooperative Extension Service, West Lafayette. http://www.ces.purdue.edu/extmedia/ID/ID-335.pdf. 1–4 pp

  • Mosier NS, Illeleji K (2006) How fuel ethanol is made from corn. ID-328. Purdue University Cooperative Extension Service, West Lafayette. http://www.ces.purdue.edu/extmedia/ID/ID-328.pdf

  • Muzhingi T, Gadaga TH, Siwela AH, Grusak MA, Russell RM, Tang G (2011) Yellow maize with high β-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am J Clin Nutr 94(2):510–519

    Article  PubMed  CAS  Google Scholar 

  • Namba T, Xu H, Kadota S, Hattori M, Takahashi T, Kojima Y (1993) Inhibition of IgE formation in mice by glycoproteins from corn silk. Phytother Res 7:227–230

    Article  CAS  Google Scholar 

  • Ndube N, van der Westhuizen L, Green IR, Shephard GS (2011) HPLC determination of fumonisin mycotoxins in maize: a comparative study of naphthalene-2,3-dicarboxaldehyde and o-phthaldialdehyde derivatization reagents for fluorescence and diode array detection. J Chromatogr B Analyt Technol Biomed Life Sci 879(23):2239–2243

    Article  PubMed  CAS  Google Scholar 

  • Neuwinger HD (2000) African traditional medicine: a dictionary of plant use and applications. Medpharm Scientific, Stuttgart, 589 pp

    Google Scholar 

  • Nie C, Lou S, Zeng R, Wang J, Huang J, Li M (2004) Advance in cyclic hydroxamic acids, main allelochemicals of Zea mays. Ying Yong Sheng Tai Xue Bao 15(6):1079–1082 (in Chinese)

    PubMed  CAS  Google Scholar 

  • Njoroge GN, Bussmann RW (2007) Ethnoterapeutic management of skin diseases among the Kikuyus of Central Kenya. J Ethnopharmacol 111:303–307

    Article  PubMed  Google Scholar 

  • Norman MJT, Pearson CJ, Searle PGE (1995) Maize (Zea mays). In: Norman MJT, Pearson CJ, Searle PGE (eds) The ecology of tropical food crops, 2nd edn. Cambridge University Press, Cambridge, p 430, Chapter 6, pp 126–144

    Google Scholar 

  • Norton RA (1995) Quantitation of steryl ferulate and p-coumarate esters from corn and rice. Lipids 30(3):269–274

    Article  PubMed  CAS  Google Scholar 

  • OECD (2002) Consensus document on compositional considerations for new varieties of Maize (Zea mays): key food and feed nutrients, anti-nutrients and secondary plant metabolites. Series on the safety of novel foods and feeds no. 6. Organisation for Economic Co-operation and Development, Paris. http://www.oecd.org/dataoecd/15/63/46815196.pdf

  • OECD (2003) Consensus document on the biology of Zea mays subsp. mays (Maize). Series on harmonisation of regulatory oversight in biotechnology, no. 27. Organisation for Economic Co-operation and Development, Paris. http://www.oecd.org/dataoecd/17/40/46815758.pdf

  • Ogie-Odia EA, Oluowo EF (2009) Assessment of some therapeutic plants of the Abbi people in Ndokwa West L.G.A of Delta State, Nigeria. Ethnobot Leafl 13:989–1002

    Google Scholar 

  • OGTR (2008) The biology of Zea mays L. ssp. mays (maize or corn). Document prepared by the Office of the Gene Regulator, Canberra. http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/maize-3/$FILE/biologymaize08_2.pdf

  • Okarter N (2012) Phenolic compounds from the insoluble-bound fraction of whole grains do not have any cellular antioxidant activity. Life Sci Med Res 2012:LSMR-37

    Google Scholar 

  • Ortíz de Bertorelli L (1993) Extraction and characterization of zeins from kernels of 10 maize cultivars. Arch Latinoam Nutr 43(3):248–253 (in Spanish)

    PubMed  Google Scholar 

  • Ortiz de Bertorelli L, Guerra M (1983) Characterization of corn proteins of the cultivars Venezuela-1, Arichuna, Obregon and Venezuela-1 Opaque-2. Arch Latinoam Nutr 33(3):539–556 (in spanish)

    PubMed  CAS  Google Scholar 

  • Owoyele BV, Negedu MN, Olaniran SO, Onasanwo SA, Oguntoye SO, Sanya JO, Oyeleke SA, Ibidapo AJ, Soladoye AO (2010) Analgesic and anti-inflammatory effects of aqueous extract of Zea mays husk in male Wistar rats. J Med Food 13(2):343–347

    Article  PubMed  Google Scholar 

  • Paliwal RL (2000) Maize type. In: Paliwal RL, Granados G, Laffite HR, Marathée JP (eds) Tropical maize: improvement and production. FAO, Rome, pp 39–43

    Google Scholar 

  • Paraman I, Lamsal BP (2011) Recovery and characterization of α-zein from corn fermentation coproducts. J Agric Food Chem 59(7):3071–3077

    Article  PubMed  CAS  Google Scholar 

  • Pastorello EA, Farioli L, Pravettoni V, Ispano M, Scibola E, Trambaioli C, Giuffrida MG, Ansaloni R, Godovac-Zimmermann J, Conti A, Fortunato D, Ortolani C (2000) The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein. J Allergy Clin Immunol 106(4):744–751

    Article  PubMed  CAS  Google Scholar 

  • Pastorello EA, Pompei C, Pravettoni V, Farioli L, Calamari AM, Scibilia J, Robino AM, Conti A, Iametti S, Fortunato D, Bonomi S, Ortolani C (2003) Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 degrees C, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol 112(4):775–783

    Article  PubMed  CAS  Google Scholar 

  • Pastorello EA, Farioli L, Pravettoni V, Scibilia J, Conti A, Fortunato D, Borgonovo L, Bonomi S, Primavesi L, Ballmer-Weber B (2009) Maize food allergy: lipid-transfer proteins, endochitinases, and alpha-zein precursor are relevant maize allergens in double-blind placebo-controlled maize-challenge-positive patients. Anal Bioanal Chem 395(1):93–102

    Article  PubMed  CAS  Google Scholar 

  • Pink RC, Bailey TA, Iputo JE, Sammon AM, Woodman AC, Carter DR (2011) Molecular basis for maize as a risk factor for esophageal cancer in a South African population via a prostaglandin E2 positive feedback mechanism. Nutr Cancer 63(5):714–721

    Article  PubMed  CAS  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103

    Article  PubMed  CAS  Google Scholar 

  • Porcher MH et al. (1995–2020) Searchable World Wide Web multilingual multiscript plant name database. Published by The University of Melbourne, Melbourne. http://www.plantnames.unimelb.edu.au/Sorting/Frontpage.html

  • Pozo-Insfran DD, Brenes CH, Saldivar SOS, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39(6):696–703

    Article  CAS  Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledons, vols 1 and 2. Longman, London, 607 pp

    Google Scholar 

  • Ramos-Escudero F, Mu Oz AM, Alvarado-Ort ZC, Alvarado N, Yáñez JA (2012) Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J Med Food 15(2):206–215

    Article  PubMed  CAS  Google Scholar 

  • Ren SC, Ding XL (2004) Isolation and identification of flavonoids from corn silk (Zea mays). Chinese Trad Herb Drugs 8:857–858

    Google Scholar 

  • Ren SC, Ding XL (2007) Isolation of flavonoids in corn silk and their chemical structure identification. J Henan Univ Technol (Nat Sci Ed) 4:34–36

    Google Scholar 

  • Ren SC, Ding XL, Shi X (2005) Antioxidant activity of ax-5″-methane-3′ -metoxymaysin and ax-4″-OH-3′- methoxymaysin from corn silk. J Henen Univ Technol (Nat Sci ed) 26:5–8

    CAS  Google Scholar 

  • Ren SC, Liu ZL, Ding XL (2009) Isolation and identification of two novel flavones glycosides from corn silk (Stigma maydis). J Med Plants Res 3(12):1009–1015

    CAS  Google Scholar 

  • Sammon AM (1999) Maize meal, non-esterified linoleic acid, and endemic cancer of the esophagus – preliminary findings. Prostaglandins Other Lipid Mediat 57(2–3):167–171

    Article  PubMed  CAS  Google Scholar 

  • Sammon AM, Iputo JE (2006) Maize meal predisposes to endemic squamous cancer of the oesophagus in Africa: breakdown of esterified linoleic acid to the free form in stored meal leads to increased intragastric PGE2 production and a low-acid reflux. Med Hypotheses 67(6):1431–1436

    Article  PubMed  CAS  Google Scholar 

  • Sands AL, Leidy HJ, Hamaker BR, Maguire P, Campbell WW (2009) Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutr Res 29(6):383–390

    Article  PubMed  CAS  Google Scholar 

  • Santiago R, Reid LM, Arnason JT, Zhu XY, Martinez N, Malvar RA (2007) Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). J Agric Food Chem 55(13):5186–5193

    Article  PubMed  CAS  Google Scholar 

  • Santiago R, Sandoya G, Butrón A, Barros J, Malvar RA (2008) Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). J Agric Food Chem 56(17):8017–8022

    Article  PubMed  CAS  Google Scholar 

  • Sarfare S, Menon S, Shailajan S (2010) Cornsilk as a bioavailable source of betasitosterol: a pharmacokinetic study using HPTLC. Asian J Plant Sci 9:44–50

    Article  CAS  Google Scholar 

  • Semprún-Fereira M, Ryder E, Morales LM, Gómez ME, Raleigh X (1994) Glycemic index and insulin response to the ingestion of precooked corn flour in the form of “arepa” in healthy individuals. Invest Clin 35(3):131–142 (in Spanish)

    PubMed  Google Scholar 

  • Shimotoyodome A, Suzuki J, Kameo Y, Hase T (2011) Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. Br J Nutr 106(1):96–104

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Betrán J, Runge ECA (eds) (2004) Corn: origin, history, technology, and production. Wiley, Hoboken, 949 pp

    Google Scholar 

  • Snook ME, Gueldner RC, Widstrom NW, Wiseman BR, Himmelsbach DS, Harwood JS, Costello CE (1993) Levels of maysin and maysin analogs in silks of maize germplasm. J Agric Food Chem 41:1481–1485

    Article  CAS  Google Scholar 

  • Snook ME, Widstrom NW, Wiseman BR, Gueldner RC, Wilson RL, Himmelsbach DS, Harwood JS, Costello CE (1994) New flavone C-glycosides from corn (Zea mays L.) for the control of the corn earworm (Helicoverpa zea). In: Hedin PA (ed) Bioregulators for crop protection and pest control, vol 557, ACS symposium series. American Chemical Society, Washington, DC, pp 122–135

    Chapter  Google Scholar 

  • Snook ME, Widstrom NW, Wiseman BR, Byrne PF, Harwood JS, Costello CE (1995) New C-4″-hydroxy derivatives of maysin and 3′-methoxymaysin isolated from corn silks (Zea mays). J Agric Food Chem 43:2740–2745

    Article  CAS  Google Scholar 

  • Srinivasan G, Zaidi PH, Singh NN, Sanchez C (2004) Increasing productivity through genetic improvement for tolerance to drought and excess-moisture stress in maize (Zea mays L.). In Vang S, Craswell E, Shu F, Fischer K (eds) Water in agriculture. ACIAR proceedings no. 116, Canberra, 239 pp

    Google Scholar 

  • Stuart GU (2010) Philippine alternative medicine. Manual of some Philippine medicinal plants. http://www.stuartxchange.org/OtherHerbals.html

  • Suzuki R, Okada Y, Okuyama T (2005) The favorable effect of style of Zea mays L. on streptozotocin induced diabetic nephropathy. Biol Pharm Bull 28(5):919–920

    Article  PubMed  CAS  Google Scholar 

  • Tabuti JRS, Lye KA, Dhillion SS (2003) Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J Ethnopharmacol 88:19–44

    Article  PubMed  CAS  Google Scholar 

  • Tahraoui A, El-Hilaly J, Israili ZH, Lyoussi B (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Moroco (Errachidia province). J Ethnopharmacol 100:105–117

    Article  Google Scholar 

  • Tang LH, Ding XL, You LF, Gu WE, Yu FR (1995) Bio-active substances from corn silk-corn silk polysaccharide (CSPS) and its immunological enhancing function. J Wuxi Univ Light Indus (China) 4:319–324

    Google Scholar 

  • Tapsoba H, Deschamps JP (2006) Use of medicinal plants for the treatment of oral diseases in Burkina Faso. J Ethnopharmacol 104:68–78

    Article  PubMed  Google Scholar 

  • Torres-Sánchez L, López-Carrillo L (2010) Fumonisin intake and human health. Salud Publica Mex 52(5):461–467 (in Spanish)

    Article  PubMed  Google Scholar 

  • Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, Mock HP, Peterek S, Matros A, Petroni K, Pilu R, Rotilio D, Tonelli C, de Leiris J, Boucher F, Martin C (2008) Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion injury. J Nutr 138(4):747–752

    PubMed  CAS  Google Scholar 

  • Tsaftaris AS (1995) The biology of maize (Zea mays, L.). Document XI/754/95 European Commission

    Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA national nutrient database for standard reference, Release 24. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl

  • Valencia Zavala MP, Vega Robledo GB, Sánchez Olivas MA, Duarte Diaz RJ, Oviedo CL (2006) Maize (Zea mays): allergen or toleragen? Participation of the cereal in allergic disease and positivity incidence in cutaneous tests. Rev Alerg Mex 53(6):207–211

    PubMed  Google Scholar 

  • Velazquez DV, Xavier HS, Batista JE, de Castro-Chaves C (2005) Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats. Phytomedicine 12(5):363–369

    Article  PubMed  CAS  Google Scholar 

  • Waiss AC Jr, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ (1979) Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. J Econ Entomol 72(2):256–258

    CAS  Google Scholar 

  • Wan Rosli WI, Nurhanan AR, Mohsin SSJ, Farid CG (2008) Aqueous, alcoholic treated and proximate analysis of Maydis stigma (Zea mays) hairs. Annu Microsc 8:66–72

    Google Scholar 

  • White PJ, Johnson LA (eds) (2003) Corn: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St. Paul, 892 pp

    Google Scholar 

  • Xu JG, Hu QP, Wang XD, Luo JY, Liu Y, Tian CR (2010) Changes in the main nutrients, phytochemicals, and antioxidant activity in yellow corn grain during maturation. J Agric Food Chem 58(9):751–5756

    Article  PubMed  CAS  Google Scholar 

  • Zeringue HJ Jr (2000) Identification and effects of maize silk volatiles on cultures of Aspergillus flavus. J Agric Food Chem 48(3):921–925

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Kaplan ML (1997) Soluble amylose cornstarch is more digestible than soluble amylopectin potato starch in rats. J Nutr 127(7):1349–1356

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2013). Zea mays . In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5653-3_21

Download citation

Publish with us

Policies and ethics