Skip to main content

An Intelligent Flow Measurement Technique by Venturi Flowmeter Using Optimized ANN

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 186))

Abstract

An intelligent flow measurement technique by venturi flow meter using an optimized Artificial Neural Network (ANN) is presented. The objectives of the present work are (i) to extend the linearity range of measurement to 100 % of the full scale, (ii) to make the measurement technique adaptive of variation in (a) venturi diameter ratio, (b) discharge coefficient, (c) liquid density, and (d) liquid temperature, and (iii) to achieve objectives (i) and (ii) by using an optimized neural network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lawley JE (1982) Orifice meter calibration’. In: 57th international school of hydrocarbon measurement, document ID: 16233

    Google Scholar 

  2. Yanagiharaa S, Mochizukia O, Satoa K, Saitob K (1999) Variable area venturi type exhaust gas flow meter’. JSAE Rev, Science direct 20(2):265–267

    Google Scholar 

  3. Zhang JQ, Yan Y (2001) A self validating differential pressure flow sensor’. In: Proceedings of IEEE conference on instrumentation and measurement technology, Budapest

    Google Scholar 

  4. Na MG, Lee YJ, Hwang IJ (2005) A smart software sensor for feedwater flow measurement monitoring. IEEE Trans Nucl Sci 52(6):3026–3034

    Google Scholar 

  5. Xu L, Zhou W, Li X, Wang M (2011) Wet-gas flow modeling for the straight section of throat-extended venturi meter. IEEE Trans Instrum Meas 60(6):2080–2087

    Google Scholar 

  6. Xu L, Li H, Tang S, Tan C, Hu B (2008) Wet gas metering using a venturi-meter and neural networks. In: Proceedings of IEEE conference on instrumentation and measurement technology, Canada

    Google Scholar 

  7. Pereira JMD, Postolache O, Girao PMBS (2009) PDF-based progressive polynomial calibration method for smart sensors linearization. IEEE Trans Instrum Meas 58(9):3245–3252

    Google Scholar 

  8. Yang HY, Lee SH, Na MG (2009) monitoring and uncertainty analysis of feedwater flow rate using data-based modeling method. IEEE Trans Nucl Sci 56(4):2426–2433

    Google Scholar 

  9. Fang L, Cao S, Li J, Cheng H (2009) Venturi wet gas measurement based on homogenous and Chisholm model. In: Proceedings of international conference on computer and automation engineering, Thailand

    Google Scholar 

  10. Xu L, Zhou W, Li X, Tang S (2011) Wet gas metering using a revised venturi meter and soft-computing approximation techniques. IEEE Trans Instrum Meas 60(3):946–2087

    Google Scholar 

  11. Pereira M (2009) Flow meters: Part 1. IEEE Mag Instrum Meas 12(1):18–26

    Google Scholar 

  12. Xu L, Tang S (2009) Wet gas metering using a venturi-meter and support vector machines. In: Proceedings of IEEE conference on instrumentation and measurement technology, Singapore

    Google Scholar 

  13. Santhosh KV, Roy BK (2012) An intelligent flow measuring technique using venturi. Lecture notes in engineering and computer science: proceeding of international multiconference of engineers and computer scientists, IMECS 2012, 14–16 March 2012, Hong Kong, pp 902–907

    Google Scholar 

  14. Doebelin EO (2003) Measurement systems—application and design, 5th edn. Tata McGraw Hill publishing company, New York

    Google Scholar 

  15. Liptak BG (2003) Instrument engineers’ handbook: process measurement and analysis, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  16. Plaza RJ (2006) Sink or swim: the effects of temperature on liquid density and buoyancy’. California state science fair

    Google Scholar 

  17. Density of fluids—changing pressure and temperature, the engineering toolbox (2004)

    Google Scholar 

  18. Sensorone DMD331 datasheets 2008

    Google Scholar 

  19. Björck A (1996) Numerical methods for least squares problems. SIAM Publications, Philadelphia, ISBN 0-89871-360-9

    Google Scholar 

  20. Roger F (1987) Practical methods of optimization, 2nd ed. Wiley, New York, ISBN 978-0-471-91547-8

    Google Scholar 

  21. Dias FM, Antunes A, Vieira J, Mota AM (2004) Implementing the levenberg-marquardt algorithm on-line: a sliding window approach with early stopping. In: International conference on proceedings of IFAC, USA

    Google Scholar 

  22. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, engineering faculty, computer engineering department

    Google Scholar 

  23. Venkata Rao R (2006) Multi-objective optimization of multi-pass milling process parameters using artificial bee colony algorithm. Artificial intelligence in manufacturing. Nova Science Publishers, USA

    Google Scholar 

  24. Li J-B, Chung Y-K (2005) A novel back propagation neural network training algorithm designed by an ant colony optimization. IEEE/PES transmission and distribution conference & exhibition: Asia and Pacific Dalian, China

    Google Scholar 

  25. Bianchi L, Gambardella LM, Dorigo M (2002) An ant colony optimization approach to the probabilistic travelling salesman problem. In: Proceedings of PPSN-VII, seventh inter 17 national conference on parallel problem solving from nature. Springer, Berlin

    Google Scholar 

  26. Russell S, Norvig P (2009) Artificial intelligence a modern approach, 3rd edn. Prentice Hall, New York

    Google Scholar 

  27. Park J, Sandberg JW (1991) Universal approach using radial basis function network. Neural Comput 3:246–257

    Google Scholar 

  28. Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78(9):1484–1487

    Article  Google Scholar 

  29. Paul Yee V, Haykin S (2001) Regularized radial basis function networks: theory and applications. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binoy Krishna Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Venkata, S.K., Roy, B.K. (2013). An Intelligent Flow Measurement Technique by Venturi Flowmeter Using Optimized ANN. In: Yang, GC., Ao, SI., Huang, X., Castillo, O. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5651-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5651-9_25

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5623-6

  • Online ISBN: 978-94-007-5651-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics