Skip to main content

Characterisation of a Coastal Aquifer System in the Eyre Peninsula, South Australia, Using Nuclear Magnetic Resonance Methods

  • Chapter
  • First Online:
Book cover Groundwater in the Coastal Zones of Asia-Pacific

Part of the book series: Coastal Research Library ((COASTALRL,volume 7))

Abstract

The coastal aquifers of the Uley Basin, which are the most important source of potable groundwater for the Eyre Peninsula, consist of unconfined Quaternary limestone overlying Tertiary clays and sandstones. Despite its importance, elements of the connectivity and total water resource basin remain relatively poorly understood. To address this, hydrogeophysical methods have been employed to better characterise the aquifer systems present. Interpretation of airborne electromagnetic data provided evidence for the delineation of the base of the Quaternary (limestone) aquifer and a basement low in the southwest corner of the South Uley Groundwater Lens, where there is a limited number of lithological bores or groundwater wells. The basement low, adjacent to the coast, suggests a preferential groundwater flow path and a possible connection between the Basin aquifers and the Southern Ocean.

Geophysical methods are routinely employed for groundwater exploration, assessment, and aquifer characterisation, particularly where access to land is limited and where other investigation techniques such as drilling may be limited or prohibited. In areas of environmental significance, or where access is generally difficult, non-invasive hydrogeophysical methods offer an alternative to exploratory drilling, by targeting areas of interest and better defining groundwater and aquifer characteristics in advance. We discuss the application of the hydrogeophysical technique of surface nuclear magnetic resonance (sNMR) for groundwater assessment. Presently, sNMR is the only hydrogeophysical technique that allows for direct detection of groundwater in the subsurface.

To better understand the possible inter-connectivity between the Uley Basin and the Southern Ocean; and as a precursor to considering whether new groundwater resources could be tapped, we investigate a series of (sNMR) soundings along a transect and also at locations where information about the aquifer is better known. We confirm the presence of a Quaternary limestone aquifer containing potable water, extending 1–2 km across the south western corner of the Uley South Basin. The aquifer is defined to be about 15–20 m in thickness and possesses an effective porosity of around 20 %; it overlies clay layers that separate the limestone from a brackish Tertiary sandstone aquifer beneath. In conjunction with conductivity-depth sections derived from AEM data, our sNMR results deliver completely new knowledge and extend the hydrogeological understanding of this corner of the Uley Basin at a relatively low cost and minimal environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abragam A (1961) Principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  • Ames DP (1967) Magnetic resonance. In: Condon EU, Odishaw H (eds) Handbook of physics. McGraw-Hill, New York

    Google Scholar 

  • Barnett SR (1978) Eyre Peninsula groundwater survey – Uley South Basin progress report no. 5 – water balance and safe yield. Department for Water Resources, Adelaide

    Google Scholar 

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460–473

    Article  Google Scholar 

  • Bransden BH, Joachain CJ (1994) Introduction to quantum mechanics. Longman Scientific & Technical, London

    Google Scholar 

  • Brodie RC (2010) Holistic inversion of airborne electromagnetic data. PhD thesis, Australian National University, Canberra

    Google Scholar 

  • Clarke DS, Berens V, Dennis KJ (2003) Uley South – Coffin Bay observation well network review. Department of Water, Land and Biodiversity Conservation, Adelaide

    Google Scholar 

  • Coates GR, Xiao L, Prammer MG (2001) NMR logging principles and applications. Halliburton Energy Services, Houston

    Google Scholar 

  • Davis AC, Cahill K, Hatch M, Munday T (2012) Aquifer characterisation in the Uley South Basin, South Australia, using NMR: final Report. CSIRO Water for a Healthy Country National Research Flagship, Perth

    Google Scholar 

  • Dunn K-J, Bergman DJ, LaTorraca GA (2002) Nuclear magnetic resonance: petrophysical and logging applications. Pergamon Press, Oxford

    Google Scholar 

  • Evans S (1997) Estimating long term recharge to thin, unconfined carbonate aquifers using conventional and environmental isotope techniques: Eyre Peninsula, South Australia. MSc thesis, Flinders University, South Australia

    Google Scholar 

  • Evans S (2002) Southern basins prescribed wells areas groundwater monitoring status report 2002. Department of Water, Land and Biodiversity Conservation, South Australia, Adelaide

    Google Scholar 

  • Evans S, Watkins N, Li C, Kuyper N, Weir Y, McLean A (2009) Southern Basins PWA Status Report. Eyre Peninsula NRM Board

    Google Scholar 

  • Fitterman DV, Deszcz-Pan M (1998) Helicopter EM mapping of saltwater intrusion in Everglades National Park. Fla Explor Geophys 29:240–243

    Article  Google Scholar 

  • Fitzpatrick A, Cahill K, Munday T, Berens V (2009) Informing the hydrogeology of Coffin Bay, South Australia, through the constrained inversion of tempest AEM Data. CSIRO Water for a Healthy Country National Research Flagship, Perth

    Google Scholar 

  • Government of South Australia (2001) Understanding the Sourthern Basins Prescribed Wells Area. Department of Water Resources, Adelaide

    Google Scholar 

  • Guillen A, Legchenko A (2002) Application of linear programming techniques to the inversion of proton magnetic resonance measurements for water prospecting from the surface. J Appl Geophys 50:149–162

    Article  Google Scholar 

  • Harrington N, Evans S, Zulfic D (2006) Uley basin groundwater modelling project, vol 1, Project overview and conceptual model development. Department of Water, Land and Biodiversity Conservation, Adelaide

    Google Scholar 

  • Hertrich M (2008) Imaging of groundwater with nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 53:227–248

    Article  Google Scholar 

  • James-Smith JM, Brown KG (2002) Groundwater flow model of the Quaternary Limestone aquifer in the Uley South lens, Eyre Peninsula, South Australia. Department for Water Resources, Adelaide

    Google Scholar 

  • Johns RK (1961) Geology and mineral resources of southern Eyre Peninsula: Bulletin 037. Geological Survey of South Australia, Adeliade

    Google Scholar 

  • Kirkegaard C, Sonnenborg TO, Auken E, Jørgensen F (2011) Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetics. Vadose Zone J 10:125–135

    Article  Google Scholar 

  • Knight R, Grunewald E, Irons T, Dlubac K, Song Y, Bachman HN, Grau B, Walsh D, Abraham JD, Cannia J (2012) Field experiment provides ground truth for surface nuclear magnetic resonance measurement. Geophys Res Lett 39:L03304

    Article  Google Scholar 

  • Legchenko AV, Shushakov OA (1998) Inversion of surface NMR data. Geophysics 63:75–84

    Article  Google Scholar 

  • Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50:3–19

    Article  Google Scholar 

  • Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magneric resonance as a geophysical tool for hydrogeologists. J Appl Geophys 50:21–46

    Article  Google Scholar 

  • Martin R, Clarke D (2000) Prescribed groundwater resources of Eyre Peninsula. MESA J 18:25–27

    Google Scholar 

  • Morton WM, Steel TM (1966) Eyre Peninsula groundwater study - Uley South Basin - Progress Report 1 - Aquifer evaluation. Department of Mines, Adelaide

    Google Scholar 

  • Morton W, Steel TM (1968) Eyre Peninsula groundwater, Uley South area. Hydrogeological studies summary and conclusions report – EWS Department. Department of Mines, Adelaide

    Google Scholar 

  • Morton WM, Steel TM (1970) Evaluation of aquifers in the Uley South groundwater basin, southern Eyre Peninsula. Miner Resour Rev 128:33–48

    Google Scholar 

  • Mueller-Petke M, Yaramanci U (2010) QT inversion – comprehensive use of the complete surface NMR data set. Geophysics 75:WA199–WA209

    Article  Google Scholar 

  • Paine J, Minty B (2005) Airborne hydrogeophysics. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 333–357

    Chapter  Google Scholar 

  • Painter JAC (1970) Eyre Peninsula groundwater study. Consolidated report no. 2. Summary of available data, June 1970. Department of Mines, Adelaide

    Google Scholar 

  • Schirov M, Legchenko A, Creer G (1991) A new direct non-invasive groundwater detection technology for Australia. Explor Geophys 22:333–338

    Article  Google Scholar 

  • Segnit RW (1935) Preliminary report on the Wanilla fresh water basin, Co. Flinders, Eyre Peninsula. Department of Mines, Adelaide

    Google Scholar 

  • Segnit RW (1942) Final report on the Uley-Wanilla fresh water basin. Department of Primary Industries and Resources, Adelaide

    Google Scholar 

  • Shepherd RG (1962) Underground water investigations, southern Eyre Peninsula. Presented at the underground water conference of Australia, Adelaide

    Google Scholar 

  • Shepherd RG (1963) Report on underground water investigations – Sleaford Bay – Coffin Bay Area. Department of Mines, Adelaide

    Google Scholar 

  • Shepherd RG (1965) Groundwater investigations on Eyre Peninsula 1956–1965 summary report. Department of Primary Industries and Resources, Adelaide

    Google Scholar 

  • Shepherd RG (1980) Uley south groundwater basin – computer model. Department of Primary Industries and Resources, Adelaide

    Google Scholar 

  • Sibenaler XP (1976) Eyre Peninsula groundwater survey, Uley South basin, Progress report No 4-Aquifer evaluation. Department of Mines, Adelaide

    Google Scholar 

  • Siemon B, Christiansen AV, Auken E (2008) A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf Geophys 7:629–646

    Google Scholar 

  • Vouillamoz JM, Sokheng S, Bruyere O, Caron D, Arnout L (2012) Towards a better estimate of storage properties of aquifer with magnetic resonance sounding. J Hydrol 458–459:51–58

    Article  Google Scholar 

  • Walsh DO (2008) Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. J Appl Geophys 66:140–150

    Article  Google Scholar 

  • Weichman PB, Lavely EM, Ritzwoller MH (2000) Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems. Phys Rev E 62:1290–1312

    Article  Google Scholar 

  • Wyman RE (1962) Nuclear magnetism log field test results. Presented at the Society of Petrophysicists & Well Log Analysts. Houston, TX

    Google Scholar 

  • Zulfic D, Harrington N, Evans S (2007) Uley basin groundwater modelling project, vol 2, Groundwater flow model. Department of Water, Land and Biodiversity Conservation, Adelaide

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davis, A., Munday, T., Somaratne, N. (2013). Characterisation of a Coastal Aquifer System in the Eyre Peninsula, South Australia, Using Nuclear Magnetic Resonance Methods. In: Wetzelhuetter, C. (eds) Groundwater in the Coastal Zones of Asia-Pacific. Coastal Research Library, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5648-9_6

Download citation

Publish with us

Policies and ethics