Skip to main content

CD34+/AC133+ Endothelial Progenitor Cells as Imaging Probes for Neovascularization of Tumors

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 9

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 9))

Abstract

It was generally considered that blood vessel formation during postnatal life is restricted to angiogenesis only, and for decades tumor vascularization was thought to be the exclusive result of the sprouting of new vessels from the preexisting ones. However, recent studies demonstrated the existence of additional angiogenic and vasculogenic mechanisms associated with tumor growth. Tumor growth and metastasis strongly depends on neovascularization. Endothelial cells that contribute to tumor neovasculatures can originate from sprouting and co-option of neighboring pre-existing vessels. However, there is emerging evidence indicating that bone-marrow derived endothelial progenitor cells (EPCs) also contribute to the vasculogenesis and growth of certain tumors. A subpopulation of CD34+ human hematopoietic stem cells (HSCs) identified by the cell-surface molecule CD133 (AC133), have been shown to be more specific for endothelial differentiation and angiogenesis. We have published the reports showing involvement of peripheral blood, cord blood and bone marrow derived EPCs into tumor neovascularization, and the EPCs’ involvement in tumor neovascularization was determined by in vivo magnetic resonance and nuclear medicine imaging. In this communication different imaging modalities for in vivo tracking of EPCs to the sites of active angiogenesis/vasculogenesis are discussed, where EPCs are used as imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425

    Article  PubMed  CAS  Google Scholar 

  • Arbab AS, Frank JA (2008) Cellular MRI and its role in stem cell therapy. Regen Med 3:199–215

    Article  PubMed  CAS  Google Scholar 

  • Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846

    Article  PubMed  Google Scholar 

  • Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Arbab AS, Pandit SD, Anderson SA, Yocum GT, Bur M, Frenkel V, Khuu HM, Read EJ, Frank JA (2006) Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24:671–678

    Article  PubMed  CAS  Google Scholar 

  • Arbab AS, Janic B, Knight RA, Anderson SA, Pawelczyk E, Rad AM, Read EJ, Pandit SD, Frank JA (2008) Detection of migration of locally implanted AC133+ stem cells by cellular magnetic resonance imaging with histological findings. FASEB J 22:3234–3246

    Article  PubMed  CAS  Google Scholar 

  • Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA (2009) In vivo cellular imaging for translational medical research. Curr Med Imaging Rev 5:19–38

    Article  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864, Epub 2004 Jul 2004

    Article  PubMed  CAS  Google Scholar 

  • Duda DG, Cohen KS, Scadden DT, Jain RK (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2:805–810

    Article  PubMed  CAS  Google Scholar 

  • El HS, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas J-L, Eichmann A, Delattre J-Y, Maniotis AJ, Sanson M (2010) A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133:973–982

    Article  Google Scholar 

  • Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, Reinmuth N (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 28:94–104

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  • Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  • Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112

    PubMed  CAS  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  PubMed  CAS  Google Scholar 

  • Hillen F, Kaijzel EL, Castermans K, oude Egbrink MG, Lowik CW, Griffioen AW (2008) A transgenic Tie2-GFP athymic mouse model; a tool for vascular biology in xenograft tumors. Biochem Biophys Res Commun 368:364–367

    Article  PubMed  CAS  Google Scholar 

  • Hladovec J, Prerovsky I, Stanek V, Fabian J (1978) Circulating endothelial cells in acute myocardial infarction and angina pectoris. Klin Wochenschr 56:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  • Janic B, Arbab AS (2010) The role and therapeutic potential of endothelial progenitor cells in tumor neovascularization. Sci World J 10:1088–1099

    Article  CAS  Google Scholar 

  • Janic B, Rad AM, Jordan EK, Iskander AS, Ali MM, Varma NR, Frank JA, Arbab AS (2009) Optimization and validation of FePro cell labeling method. PLoS One 4:e5873

    Article  PubMed  Google Scholar 

  • Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS (2010) Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS One 5:e9173

    Article  PubMed  Google Scholar 

  • Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101

    Article  PubMed  CAS  Google Scholar 

  • Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001) Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97:3283–3291

    Article  PubMed  CAS  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Mancuso P, Calleri A, Cassi C, Gobbi A, Capillo M, Pruneri G, Martinelli G, Bertolini F (2003) Circulating endothelial cells as a novel marker of angiogenesis. Adv Exp Med Biol 522:83–97

    Article  PubMed  Google Scholar 

  • Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA, Benezra R, Mittal V (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558

    Article  PubMed  CAS  Google Scholar 

  • Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA (2006) Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 19:581–592

    Article  PubMed  CAS  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  • Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625

    Article  PubMed  CAS  Google Scholar 

  • Rad AM, Iskander AS, Janic B, Knight RA, Arbab AS, Soltanian-Zadeh H (2009) AC133+ Progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study. BMC Biotechnol 9:28

    Article  PubMed  Google Scholar 

  • Read EJ, Keenan AM, Carter CS, Yolles PS, Davey RJ (1990) In vivo traffic of indium-111-oxine labeled human lymphocytes collected by automated apheresis. J Nucl Med 31:999–1006

    PubMed  CAS  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Unno K, Yonezawa S, Hattori K, Nakashima E, Tsukada H, Nakajima M, Oku N (2004) In vivo trafficking of endothelial progenitor cells their possible involvement in the tumor neovascularization. Life Sci 75:575–584

    Article  PubMed  CAS  Google Scholar 

  • Varma NR, Janic B, Iskander AS, Shankar A, Bhuiyan MP, Soltanian-Zadeh H, Jiang Q, Barton K, Ali MM, Arbab AS (2012) Endothelial progenitor cells (EPCs) as gene carrier system for rat model of human glioma. PLoS One 7:e30310

    Article  PubMed  CAS  Google Scholar 

  • Yoon J-K, Park B-N, Shim W, Ahn YH, Lee G (2010) Transient cell cycle arrest of rat bone marrow mesenchymal stem cells by in-111 labeling. J Nucl Med Meeting Abstracts 51:1774

    Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90:284–288

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali S. Arbab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arbab, A.S. (2013). CD34+/AC133+ Endothelial Progenitor Cells as Imaging Probes for Neovascularization of Tumors. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 9. Stem Cells and Cancer Stem Cells, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5645-8_20

Download citation

Publish with us

Policies and ethics