Skip to main content

The Physical and Physiological Theory of Forest Ecology and Its Evaluation

  • Chapter
  • First Online:
Physical and Physiological Forest Ecology
  • 1652 Accesses

Abstract

We combine the results obtained in the previous chapters to create our physical and physiological theory of forest ecology. This is possible since the cover theory provided common ideas, concepts and methodology for the specific theories. Our theory gained strong corroboration in the tests dealing with different phenomena from metabolism to ecosystem development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber J, Mellilo J, Nadelhofer J, Pastor J, Boone D (1991) Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystem. Ecol Appl 1:303–315

    Article  Google Scholar 

  • De Wit CT, Brouwer R, Penning de Vries FWT (1970) The simulation of photosynthetic systems. In: Setlik I (ed) Prediction and measurement of photosynthetic production. Proceedings of the IBP/PP technical meeting, Trebon 1969. Centre for Agricultural Publishing & Documentation, Pudoc, Wageningen

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Hari P, Kellomäki S, Mäkelä A, Ilonen P, Kanninen M, Korpilaahti E, Nygren M (1982) Dynamics of early development of tree stand. Acta For Fenn 177:1–42

    Google Scholar 

  • Hari P, Kaipiainen L, Korpilahti E, Mäkelä A, Nilsson T, Oker-Blom P, Ross J, Salminen R (1985) Structure, radiation and photosynthetic production in coniferous stands, vol 54, Department of silvicultural research notes. University of Helsinki, Helsinki, pp 1–233

    Google Scholar 

  • Hari P, Salkinoja-Salonen M, Liski J, Simojoki A, Kolari P, Pumpanen E, Kähkönen M, Aakala T, Havimo M, Kivekäs R, Nikinmaa E (2008) Growth and development of forest ecosystems; the MicroForest model. In: Hari P, Kulmala L (eds) Boreal forest and climate change, vol 34, Advances in global change research. Springer, Dordrecht

    Chapter  Google Scholar 

  • Johnson D (1999) Simulated nitrogen cycling response to elevated CO2 in Pinus taeda and mixed deciduous forests. Tree Physiol 19:321–327

    Article  Google Scholar 

  • Liski J, Ilvesniemi H, Mäkelä A, Starr M (1998) Model analysis of the effects of soil age, fires and harvesting on the carbon storage of boreal forest soils. Eur J For Sci 49:407–416

    Google Scholar 

  • Mäkelä A (1997) A carbon balance model of growth and self-pruning in trees based on structural relationships. For Sci 43:7–24

    Google Scholar 

  • Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891–905

    Article  Google Scholar 

  • Mäkelä A, Hari P (1986) Stand growth model based on carbon uptake and allocation in individual trees. Ecol Model 33:205–229

    Article  Google Scholar 

  • Mäkelä A, Mäkinen H (2003) Generating 3D sawlogs with a process-based growth model. For Ecol Manage 184:337–354

    Article  Google Scholar 

  • Nikinmaa E (1992) Analyses of the growth of Scots pine; matching structure with function. Acta For Fenn 235:1–68

    Google Scholar 

  • Nissinen A, Hari P (1998) Effects of nitrogen deposition on tree growth and soil nutrients in boreal Scots pine stands. Environ Pollut 102:61–68

    Article  CAS  Google Scholar 

  • Noe SM, Giersch C (2004) A simple dynamic model of photosynthesis in oak leaves: coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool. Funct Plant Biol 31:1195–1204

    Article  CAS  Google Scholar 

  • Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J (1996) LIGNUM: a tree model based on simple structural units. Ann Bot 77:87–98

    Article  Google Scholar 

  • Rastetter E, Ryan M, Shaver G, Mellilo J, Nadelhoffer K, Hobbie J, Aber J (1991) A general biochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate and N deposition. Tree Physiol 9:101–126

    Article  CAS  Google Scholar 

  • Running S, Gover S (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications. II dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pertti Hari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hari, P. (2013). The Physical and Physiological Theory of Forest Ecology and Its Evaluation. In: Hari, P., Heliövaara, K., Kulmala, L. (eds) Physical and Physiological Forest Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5603-8_10

Download citation

Publish with us

Policies and ethics