Skip to main content

Reconstruction of Quantum Mechanics

  • Chapter
  • First Online:
Rational Reconstructions of Modern Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 174))

  • 1520 Accesses

Abstract

The historical development of quantum mechanics offers a rather heterogeneous picture, a large variety of interpretations, goals, and philosophical classifications. Quantum mechanics was understood as a theory in the spirit of positivism, operationalism, and empiricism, – to mention here only a few of numerous interpretations. None of the main protagonists of quantum mechanics, Bohr, Heisenberg, Schrödinger, and Pauli agreed completely about the understanding of the new theory, nor do individual scientists permanently represent the same philosophical position. As an outstanding example, we mention here Heisenberg, who changed his assessment of quantum mechanics several times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bohr (1934), p. 53.

  2. 2.

    Bohr (1934), p. 8.

  3. 3.

    Bohr (1934), pp. 54–55.

  4. 4.

    Mittelstaedt (2005).

  5. 5.

    Mittelstaedt (1976) and Stachow (1976).

  6. 6.

    Mittelstaedt (1976).

  7. 7.

    Mittelstaedt (1978).

  8. 8.

    Mittelstaedt (1978).

  9. 9.

    Stachow (1980).

  10. 10.

    Busch et al. (1996).

  11. 11.

    Mittelstaedt (1978).

  12. 12.

    Stachow (1980).

  13. 13.

    Mittelstaedt (1978).

  14. 14.

    If two propositions are proof equivalent, then they are also value equivalent. The inverse is not generally true. However, in classical language the two equivalence relations coincide.

  15. 15.

    Stachow (1976).

  16. 16.

    Mittelstaedt (1978), p. 29, Kalmbach (1983).

  17. 17.

    Stachow (1984).

  18. 18.

    Cf. Piron (1964), MacLaren (1965), and Varadarajan (1968).

  19. 19.

    Keller (1980).

  20. 20.

    For more details cf. Dalla Chiara et al. (2001, pp.48–50, 2004, pp.72–74).

  21. 21.

    Solèr (1995).

  22. 22.

    Piron (1976) and MacLaren (1965).

  23. 23.

    Busch et al. (1996).

  24. 24.

    Mittelstaedt (1998).

  25. 25.

    Busch et al. (1996).

  26. 26.

    Mittelstaedt et al. (1987)

  27. 27.

    Busch (1985) and Busch et al. (2007).

  28. 28.

    Giuntini and Greuling (1989).

  29. 29.

    Dalla Chiara (1995).

  30. 30.

    Foulis and Bennett (1994).

  31. 31.

    Giuntini (1990).

  32. 32.

    Dalla Chiara et al. (1993).

  33. 33.

    Dalla Chiara and Giuntini (1994).

  34. 34.

    Busch and Shimony (1996).

  35. 35.

    Busch (1998).

  36. 36.

    Natanson (1911).

  37. 37.

    Bose (1924a, b).

  38. 38.

    Einstein (1924, 1925).

  39. 39.

    Adopted from Hund (1967), p. 154.

  40. 40.

    Pauli (1940).

  41. 41.

    Streater and Wightman (1964), Section 4.4.

  42. 42.

    Leibniz, G. W. Discours de Métaphysique, GP IV, p. 433.

  43. 43.

    Castellani and Mittelstaedt (2000).

  44. 44.

    Leibniz, G. W., Discours de Métaphysique, GP IV, p. 434.

  45. 45.

    Adopted from Hund (1967), p. 154.

  46. 46.

    G. W. Leibniz, GP V, p. 214. – (Engraving reproduction; Schubert 1796).

  47. 47.

    G. W. Leibniz, GP VII, p. 372.

  48. 48.

    Armstrong (1983), Mittelstaedt and Weingartner (2004) and Van Fraassen (1989).

  49. 49.

    von Neumann (1932).

  50. 50.

    Birkhoff and von Neumann (1936).

  51. 51.

    For a very detailed presentation of the history of quantum logic cf. Jammer (1974), pp. 341–616.

  52. 52.

    Feyerabend (1965) and Stegmüller (1970), pp. 438–461.

  53. 53.

    Putnam (1969).

  54. 54.

    Stachow (1976) and Mittelstaedt (1978).

  55. 55.

    Lorenzen (1955).

  56. 56.

    Curry (1952).

  57. 57.

    As mentioned in Section (3.4) a lattice of this kind is atomic and fulfils the covering law.

  58. 58.

    We will come back to this ontology O(Q U) in Sections (4.3.1) and (4.3.4).

References

  • Armstrong, D. (1983). What is a law of nature? Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.

    Article  MathSciNet  Google Scholar 

  • Bohr, N. (1934). Atomic theory and the description of nature. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bose, S. N. (1924a). Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik, 26, 178–181.

    Article  ADS  MATH  Google Scholar 

  • Bose, S. N. (1924b). Wärmegleichgewicht und Strahlungsfeld in Abwesenheit der Materie. Zeitschrift für Physik, 27, 384–393.

    Article  ADS  MATH  Google Scholar 

  • Busch, P. (1985). Indeterminacy relations and simultaneous measurements in quantum theory. International Journal of Theoretical Physics, 24, 63–92.

    Article  MathSciNet  ADS  Google Scholar 

  • Busch, P. (1998). Can ‘unsharp objectification’ solve the measurement problem? International Journal of Theoretical Physics, 37, 241–247.

    Article  MathSciNet  MATH  Google Scholar 

  • Busch, P., & Shimony, A. (1996). Insolubility of the quantum measurement problem for unsharp observables. Studies in History and Philosophy of Modern Physics., 27, 397–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Busch, P., Lahti, P., & Mittelstaedt, P. (1996). The quantum theory of measurement (2nd ed.). Heidelberg: Springer.

    MATH  Google Scholar 

  • Busch, P., Heinonen, T., & Lahti, P. (2007). Heisenberg´s uncertainty principle. Physics Reports, 452, 155–176.

    Article  ADS  Google Scholar 

  • Castellani, E., & Mittelstaedt, P. (2000). Leibniz’s Principle physics and the language of Physics. Foundations of physics, 30, 1587–1604.

    Article  MathSciNet  Google Scholar 

  • Curry, H. B. (1952). Lecons de Logique Algébrique. Paris: Gauthier – Villars.

    MATH  Google Scholar 

  • Dalla Chiara, M. L. (1995). Unsharp quantum logics. International Journal of Theoretical Physics, 34, 1331–1336.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dalla Chiara, M. L., & Giuntini, R. (1994). Partial unsharp quantum logics. Foundation of Physics, 24, 1161–1177.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dalla Chiara, M. L., Cattaneo, G., & Giuntini, R. (1993). Fuzzy-intuitionistic quantum logic. Studia Logica, 52, 1–24.

    Article  MathSciNet  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R. (2001). Quantum logics. http://arxiv.org/abs/quant-ph/0101028v2.pdf

  • Dalla Chiara, M. L., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory. Dordrecht: Kluver Academic Publishers.

    Book  MATH  Google Scholar 

  • Einstein, A. (1924). Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse, (pp. 261–267).

    Google Scholar 

  • Einstein, A. (1925). Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung, Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse, (pp. 3–14).

    Google Scholar 

  • Feyerabend, P. K. (1965). Bemerkungen zur Verwendung nicht-klassischer Logiken in der Quantentheorie. In Veröffentlichungen des internationalen Forschungszentrums für Grundlagen der Wissenschaften in Salzburg, Band 1, hrsg, (pp. 351–359). Wien: Paul Weingartner.

    Google Scholar 

  • Foulis, D. J., & Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. Foundation of Physics, 24, 1331–1352.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Giuntini, R. (1990). Brower-Zadeh logic and the operational approach to quantum mechanics. Foundation of Physics, 20, 701–714.

    Article  MathSciNet  ADS  Google Scholar 

  • Giuntini, R., & Greuling, H. (1989). Towards a language of unsharp properties. Foundation of Physics, 20, 931–935.

    Article  MathSciNet  ADS  Google Scholar 

  • Hund, F. (1967). Geschichte der Quantentheorie. Mannheim: Bibliographisches Institut.

    MATH  Google Scholar 

  • Jammer, M. (1974). The philosophy of quantum mechanics. New York: Wiley.

    Google Scholar 

  • Kalmbach, G. (1983). Orthomodular Lattices. London: Academic.

    MATH  Google Scholar 

  • Keller, H. A. (1980). Ein nichtklassischer Hilbertraum. Mathematische Zeitschrift, 172, 41–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Leibniz, G. W. Philosophische Schriften (GP). C. I. Gerhardt (Ed.). Berlin 1875–1890.

    Google Scholar 

  • Lorenzen, P. (1955). Einführung in die operative Logik und Mathematik. Heidelberg: Springer.

    Book  Google Scholar 

  • MacLaren, M. D. (1965). Nearly modular orthocomplemented lattices. Transactions of the American Mathematical Society, 114, 401–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Mittelstaedt, P. (1976a). Philosophical problems of modern physics. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  • Mittelstaedt, P. (1978). Quantum logic. Dordrecht: D. Reidel Publishing Company.

    Book  MATH  Google Scholar 

  • Mittelstaedt, P. (1998). The interpretation of quantum mechanics and the measurement process. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Mittelstaedt, P. (2005). Quantum physics and classical physics − in the light of quantum logic. International Journal of Theoretical Physics, 44, 771–781.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mittelstaedt, P., & Weingartner, P. (2004). Laws of nature. Heidelberg: Springer.

    Google Scholar 

  • Mittelstaedt, P., Prieur, A., & Schieder, R. (1987). Unsharp particle-wave duality in a photon split-beam experiment. Foundations of Physics, 17, 891–903.

    Article  ADS  Google Scholar 

  • Natanson, L. (1911). Über die statistische Theorie der Strahlung. Physikalische Zeitschrift, 12, 659–666.

    Google Scholar 

  • Pauli, W. (1940). On the connection between spin and statistics. Physics Review, 58, 716–722.

    Article  ADS  Google Scholar 

  • Piron, C. (1964). Axiomatique Quantique. Helveti Physics Acta, 37, 439–468.

    MathSciNet  MATH  Google Scholar 

  • Piron, C. (1976). Foundations of quantum physics. Reading: W. A. Benjamin.

    MATH  Google Scholar 

  • Putnam, H. (1969). Is logic empirical? In M. Wartofsky & R. Cohen (Eds.), Boston studies in the philosophy of science (Vol. 5). New York: Humanities Press.

    Chapter  Google Scholar 

  • Solèr, M.-P. (1995). Characterisation of Hilbert spaces by orthomodular lattices. Communications in Algebra, 23(1), 219–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Stachow, E. W. (1976). Completeness of quantum logic. Journal of Philosophical Logic, 5, 237–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Stachow, E. W. (1980). Logical foundations of quantum mechanics. International Journal of Theoretical Physics, 19, 251–304.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Stachow, E. W. (1984). Structures of quantum language for individual systems. In P. Mittelstaedt & E.-W. Stachow (Eds.), Recent developments in quantum logic (pp. 129–145). Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Stegmüller, W. (1970). Probleme und Resultate der Wissenschaftstheorie und Analytischen Philosophie (Theorie und Erfahrung, Vol. 2). Berlin/Heidelberg: Springer.

    MATH  Google Scholar 

  • Streater, R. F., & Wightman, A. S. (1964). PCP, Spin and Statistics and All That, (2000) (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Van Fraassen, B. (1989). Laws and symmetries. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Varadarajan, V. S. (1968). Geometry of quantum theory (Vol. 1). Princeton: Van Nostrand.

    Book  MATH  Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mittelstaedt, P. (2013). Reconstruction of Quantum Mechanics. In: Rational Reconstructions of Modern Physics. Fundamental Theories of Physics, vol 174. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5593-2_3

Download citation

Publish with us

Policies and ethics