Skip to main content

MicroRNA Target Prediction and Validation

  • Chapter
  • First Online:
MicroRNA Cancer Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

The accurate prediction and validation of microRNA targets is essential to understanding the function of microRNAs. Computational predictions indicate that all human genes may be regulated by microRNAs, with each microRNA possibly targeting thousands of genes. Here we discuss computational and experimental methods for identifying mammalian microRNA targets. We describe microRNA target prediction resources and procedures that are suitable for experiments where more accurate prediction of microRNA targets is more important than detecting all putative targets. We then discuss experimental methods for identifying and validating microRNA target genes, with an emphasis on the target reporter assay as the method of choice for specifically testing functional microRNA target sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lai EC (2002) Micro RNAs are complementary to 3′UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  2. John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  6. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ritchie W, Flamant S, Rasko JE (2009) MicroRNA target prediction: traps for the unwary. Nat Methods 6:397–398

    Article  CAS  PubMed  Google Scholar 

  8. Ritchie W, Flamant S, Rasko JE (2010) MimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 26:223–227

    Article  CAS  PubMed  Google Scholar 

  9. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  10. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    Article  CAS  PubMed  Google Scholar 

  11. Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38:140–153

    Google Scholar 

  12. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  13. Ritchie W, Rajasekhar M, Flamant S et al (2009) Conserved expression patterns predict microRNA targets. PLoS Comput Biol 5:e1000513

    Article  PubMed Central  PubMed  Google Scholar 

  14. Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  15. Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  17. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  18. Brennecke J, Hipfner DR, Stark A et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  CAS  PubMed  Google Scholar 

  19. Orom UA, Lund AH (2010) Experimental identification of microRNA targets. Gene 451:1–5

    Article  PubMed  Google Scholar 

  20. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174

    Article  CAS  PubMed  Google Scholar 

  21. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Doench JG, Petersen CP, Sharp PA (2003) SiRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  CAS  PubMed  Google Scholar 

  23. Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100:9779–9784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  CAS  PubMed  Google Scholar 

  25. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  26. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  27. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  28. Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7Gppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982

    Article  CAS  PubMed  Google Scholar 

  29. Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  CAS  PubMed  Google Scholar 

  31. Vinther J, Hedegaard MM, Gardner PP et al (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  33. Baek D, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    Article  CAS  PubMed  Google Scholar 

  35. Tian Z, Greene AS, Pietrusz JL et al (2008) MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18:404–411

    Article  CAS  PubMed  Google Scholar 

  36. Iliopoulos D, Malizos KN, Oikonomou P et al (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3:e3740

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jovanovic M, Reiter L, Picotti P et al (2010) A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods 7:837–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  39. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588

    Article  CAS  PubMed  Google Scholar 

  40. Krijgsveld J, Ketting RF, Mahmoudi T et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  CAS  PubMed  Google Scholar 

  41. Beitzinger M, Peters L, Zhu JY et al (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4:76–84

    Article  CAS  PubMed  Google Scholar 

  42. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204

    Article  CAS  PubMed  Google Scholar 

  43. Karginov FV, Conaco C, Xuan Z et al (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hendrickson DG, Hogan DJ, Herschlag D et al (2008) Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 3:e2126

    Article  PubMed Central  PubMed  Google Scholar 

  45. Landthaler M, Gaidatzis D, Rothballer A et al (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596

    Article  CAS  PubMed  Google Scholar 

  46. Wang WX, Wilfred BR, Hu Y et al (2010) Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA 16:394–404

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Ding L, Cheung TH et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mourelatos Z, Dostie J, Paushkin S et al (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  CAS  PubMed  Google Scholar 

  49. Tan LP, Seinen E, Duns G et al (2009) A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 37:e137

    Article  PubMed Central  PubMed  Google Scholar 

  50. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zisoulis DG, Lovci MT, Wilbert ML et al (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 17:173–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Leung AK, Young AG, Bhutkar A et al (2011) Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18:237–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Duursma AM, Kedde M, Schrier M et al (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  CAS  PubMed  Google Scholar 

  56. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105:14879–14884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tay Y, Zhang J, Thomson AM et al (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  CAS  PubMed  Google Scholar 

  58. Schnall-Levin M, Zhao Y, Perrimon N et al (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs. Proc Natl Acad Sci U S A 107:15751–15756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schnall-Levin M, Rissland OS, Johnston WK et al (2011) Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res 21:1395–1403

    Article  CAS  PubMed  Google Scholar 

  60. Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One 6:e18067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  62. Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165

    Article  CAS  PubMed  Google Scholar 

  63. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  64. Christoffersen NR, Shalgi R, Frankel LB et al (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17:236–245

    Article  CAS  PubMed  Google Scholar 

  65. Hsu RJ, Yang HJ, Tsai HJ (2009) Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res 37:e77

    Article  PubMed Central  PubMed  Google Scholar 

  66. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  CAS  PubMed  Google Scholar 

  67. Nonne N, Ameyar-Zazoua M, Souidi M et al (2010) Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 38:e20

    Article  PubMed Central  PubMed  Google Scholar 

  68. Vatolin S, Navaratne K, Weil RJ (2006) A novel method to detect functional microRNA targets. J Mol Biol 358:983–996

    Article  CAS  PubMed  Google Scholar 

  69. Andachi Y (2008) A novel biochemical method to identify target genes of individual microRNAs: identification of a new Caenorhabditis elegans let-7 target. RNA 14:2440–2451

    Article  CAS  PubMed  Google Scholar 

  70. Llave C, Xie Z, Kasschau KD et al (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  71. Addo-Quaye C, Eshoo TW, Bartel DP et al (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. German MA, Pillay M, Jeong DH et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  73. Franco-Zorrilla JM, Del Toro FJ, Godoy M et al (2009) Genome-wide identification of small RNA targets based on target enrichment and microarray hybridizations. Plant J 59:840–850

    Article  CAS  PubMed  Google Scholar 

  74. Karginov FV, Cheloufi S, Chong MM et al (2010) Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 38:781–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Li YF, Zheng Y, Addo-Quaye C et al (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J 62:742–759

    Article  CAS  PubMed  Google Scholar 

  76. Shin C, Nam JW, Farh KK et al (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Bracken CP, Szubert JM, Mercer TR et al (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39:5658–5668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Jiao Y, Riechmann JL, Meyerowitz EM (2008) Transcriptome-wide analysis of uncapped mRNAs in Arabidopsis reveals regulation of mRNA degradation. Plant Cell 20:2571–2585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Xiao C, Calado DP, Galler G et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159

    Article  CAS  PubMed  Google Scholar 

  80. Zhao Y, Ransom JF, Li A et al (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

    Article  CAS  PubMed  Google Scholar 

  81. Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    Article  CAS  PubMed  Google Scholar 

  82. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Patrick DM, Zhang CC, Tao Y et al (2010) Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev 24:1614–1619

    Article  CAS  PubMed  Google Scholar 

  84. Park CY, Choi YS, McManus MT (2010) Analysis of microRNA knockouts in mice. Hum Mol Genet 19:R169–R175

    Article  CAS  PubMed  Google Scholar 

  85. Prosser HM, Koike-Yusa H, Cooper JD et al (2011) A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol 29:840–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38:140–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank DIM Biothérapies, Stem Pole Ile-de-France, Cure The Future (Cell and Gene Trust), the Rebecca L Cooper Medical Research Foundation and the Cancer Council NSW [Project Grant 1006260] and the Australian National Health and Medical Research Council [Training Fellowship 571156] for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Ritchie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ritchie, W., Rasko, J.E.J., Flamant, S. (2013). MicroRNA Target Prediction and Validation. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_3

Download citation

Publish with us

Policies and ethics