Skip to main content

Discovering Functional microRNA-mRNA Regulatory Modules in Heterogeneous Data

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

microRNAs (miRNAs) are small non-coding RNAs that cause mRNA degradation and translation inhibition. They are pivotal regulators of development and cellular homeostasis through their control of diverse processes. Recently, great efforts have been made to elucidate many targets that are affected by miRNAs, but the functions of most miRNAs and their precise regulatory mechanisms remain elusive. With more and more matched expression profiles of miRNAs and mRNAs having been made available, it is of great interest to utilize both expression profiles and sequence information to discover the functional regulatory networks of miRNAs and their target mRNAs for potential biological processes that they may participate in. In this chapter, we first briefly review the computational methods for discovering miRNA targets and miRNA-mRNA regulatory modules, and then focus on a method of identifying functional miRNA-mRNA regulatory modules by integrating multiple data sets from different sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ridley M (2006) Genome: the autobiography of a species in 23 chapters book description. Topeka Bindery, New York

    Google Scholar 

  2. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  3. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  4. Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  CAS  PubMed  Google Scholar 

  5. Porkka KP et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135

    Article  CAS  PubMed  Google Scholar 

  6. Akao Y, Nakagawa Y, Naoe T (2007) MicroRNA-143 and −145 in colon cancer. DNA Cell Biol 26(5):311–320

    Article  CAS  PubMed  Google Scholar 

  7. Yang H et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68(2):425–433

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X et al (2009) Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 124(12):2855–2863

    Article  CAS  PubMed  Google Scholar 

  9. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Papadopoulos GL et al (2009) The database of experimentally supported targets: a functional update of TarBase. Nucl Acids Res 37(suppl_1):D155–D158

    Article  CAS  PubMed  Google Scholar 

  11. Xiao F et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucl Acids Res 37(suppl_1):D105–D110

    Article  CAS  PubMed  Google Scholar 

  12. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770

    Article  CAS  PubMed  Google Scholar 

  13. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  14. Hatzigeorgiou AG (2007) Same computational analysis, different miRNA target predictions. Nat Methods 4(3):191

    Article  CAS  Google Scholar 

  15. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucl Acids Res 36(suppl_1):D154–D158

    CAS  PubMed  Google Scholar 

  16. Yoon S, De Micheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 21(suppl_2):ii93–ii100

    CAS  PubMed  Google Scholar 

  17. Huang JC et al (2007) Using expression profiling data to identify human microRNA targets. Nat Method 4(12):1045–1049

    Article  CAS  Google Scholar 

  18. Joung J-G et al (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 23(9):1141–1147

    Article  CAS  PubMed  Google Scholar 

  19. Tran D, Satou K, Ho T (2008) Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinform 9(Suppl 12):S5

    Article  Google Scholar 

  20. Peng X et al (2009) Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 10(1):373

    Article  PubMed Central  PubMed  Google Scholar 

  21. Liu B, Li J, Tsykin A (2009) Discovery of functional miRNA-mRNA regulatory modules with computational methods. J Biomed Inform 42(4):685–691

    Article  CAS  PubMed  Google Scholar 

  22. Joung J-G, Fei Z (2009) Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics 25(3):387–393

    Article  CAS  PubMed  Google Scholar 

  23. Liu B et al (2009) Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinform 10(1):408

    Article  Google Scholar 

  24. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  25. Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13

    Article  CAS  PubMed  Google Scholar 

  26. Mazière P, Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12(11–12):452–458

    Article  PubMed  Google Scholar 

  27. John B et al (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lall S et al (2006) A genome-wide Map of conserved MicroRNA targets in C. elegans. Curr Biol 16(5):460–471

    Article  CAS  PubMed  Google Scholar 

  29. Miranda KC et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  30. Lewis BP et al (2003) Prediction of mammalian MicroRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  31. Ritchie W, Flamant S, Rasko JEJ (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Method 6(6):397–398

    Article  CAS  Google Scholar 

  32. Grimson A et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Baek D et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Alexiou P et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055

    Article  CAS  PubMed  Google Scholar 

  35. Gaidatzis D et al (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform 8(1):69

    Article  Google Scholar 

  36. Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  PubMed  Google Scholar 

  37. Selbach M et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  38. Huang J, Morris Q, Frey B (2006) Detecting microRNA targets by linking sequence, microRNA and gene expression data. Res Comput Mol Biol 3909:114–129

    Article  Google Scholar 

  39. Lavrac N et al (2004) Subgroup discovery with CN2-SD. J Mach Learn Res 5:153–188

    Google Scholar 

  40. Bonnet E et al (2010) Module network inference from a cancer gene expression data set identifies MicroRNA regulated modules. PLoS One 5(4):e10162

    Article  PubMed Central  PubMed  Google Scholar 

  41. Steyvers M et al(2004) Probabilistic author-topic models for information discovery. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, Seattle, WA

    Google Scholar 

  42. Blei DM, Jordan MI(2003) Modeling annotated data. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval, ACM, Toronto, Canada

    Google Scholar 

  43. Liu B et al (2010) Identifying functional miRNA–mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics 26(24):3105–3111

    Article  CAS  PubMed  Google Scholar 

  44. Liu JS (1994) The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem. J Am Stat Assoc 89:958–966

    Article  Google Scholar 

  45. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Blenkiron C et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214

    Article  PubMed Central  PubMed  Google Scholar 

  47. Desai KV et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972

    Article  CAS  PubMed  Google Scholar 

  48. Herschkowitz J et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76

    Article  PubMed Central  PubMed  Google Scholar 

  49. Sassen S, Miska EA, Caldas C (2008) MicroRNA – implications for cancer. Virchows Arch 452(1):1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Adelaide J et al (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67(24):11565–11575

    Article  CAS  PubMed  Google Scholar 

  51. Bergamaschi A et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45(11):1033–1040

    Article  CAS  PubMed  Google Scholar 

  52. Chin K et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541

    Article  CAS  PubMed  Google Scholar 

  53. Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr Jeffrey E. Green and Dr. Min Zhu for providing the data sets.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Liu or Jiuyong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, B., Liu, L., Tsykin, A., Goodall, G.J., Cairns, M.J., Li, J. (2013). Discovering Functional microRNA-mRNA Regulatory Modules in Heterogeneous Data. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_14

Download citation

Publish with us

Policies and ethics