Advertisement

Fluidization of Nanopowders

Chapter
  • 1.2k Downloads
Part of the Particle Technology Series book series (POTS, volume 18)

Abstract

Gas-fluidized beds of some nanopowders exhibit a nonbubbling fluid-like behavior as seen for conditioned fine powders. For example, powders of moderate density nanoparticles, such as silica nanoparticles, can be fluidized by a gas in a nonbubbling fluid-like regime. The suppression of macroscopic gas bubbles in fluidized beds of nanoparticles has been causally related to the formation of porous light aggregates. A phenomenological approach described in this chapter to analyze the behavior of gas-fluidized beds of nanoparticles is to consider aggregates as effective lightweight spheres which may exhibit non-bubbling gas-fluidization similarly to coarse beads fluidized by liquids. These complex-aggregates would be formed by a dynamic aggregation of simple-aggregates pre-existing to fluidization.

Keywords

Fumed Silica Primary Particle Size Nanoporous Membrane Terminal Settling Velocity Large Scale Industrial Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    NAN039A: Nanotechnology in environmental applications. Technical report, BCC Research (May 2006) Google Scholar
  2. 2.
    Stark, J.V., Park, D.G., Lagadic, I., Klabunde, K.J.: Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem. Mater. 8(8), 1904–1912 (1996). doi: 10.1021/cm950583p CrossRefGoogle Scholar
  3. 3.
    Koper, O., Klabunde, K.J.: Nanoparticles for the destructive sorption of biological and chemical contaminants. Technical report (May 2000) Google Scholar
  4. 4.
    Jiradilok, V., Gidaspow, D., Kalra, J., Damronglerd, S., Nitivattananon, S.: Explosive dissemination and flow of nanoparticles. Powder Technol. 164, 33–49 (2006) CrossRefGoogle Scholar
  5. 5.
    Matsuda, S., Hatano, H., Tsutsumi, A.: Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem. Eng. J. 82, 183–188 (2001) CrossRefGoogle Scholar
  6. 6.
    Hao, Z., Zhu, Q., Jiang, Z., Li, H.: Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4+CO2 reforming. Powder Technol. 183, 46–52 (2008) CrossRefGoogle Scholar
  7. 7.
    Beetstra, R., Lafont, U., Nijenhuis, J., Kelder, E.M., van Ommen, J.R.: Atmospheric pressure process for coating particles using atomic layer deposition. Chem. Vap. Depos. 15, 227–233 (2009) CrossRefGoogle Scholar
  8. 8.
    Voll, M., Kleinschmit, P.: Carbon, 6. Carbon black. In: Ullmann’s Encyclopedia of Industrial Chemistry, vol. 7. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2000). doi: 10.1002/14356007.n05_n05 Google Scholar
  9. 9.
    van Ommen, J.R., Valverde, J.M., Pfeffer, R.: Fluidization of nanopowders: A review. J. Nanopart. Res. 14, 737 (2012). doi: 10.1007/s11051-012-0737-4 CrossRefGoogle Scholar
  10. 10.
    Yao, W., Guangsheng, G., Fei, W., Wu, J.: Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol. 124, 152–159 (2002) CrossRefGoogle Scholar
  11. 11.
    Product information. Technical report, Evonik Degussa GmbH (2011). http://www.aerosil.com/product/aerosil/en/products/hydrophobic-fumed-silica/pages/default.aspx
  12. 12.
    Hyeon-Lee, J., Beaucage, G., Pratsinis, S.E., Vemury, S.: Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle x-ray scattering. Langmuir 14, 5751–5756 (1998) CrossRefGoogle Scholar
  13. 13.
    Valverde, J.M., Castellanos, A.: Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chem. Eng. J. 140(1–3), 296–304 (2008). doi: 10.1016/j.cej.2007.09.032 CrossRefGoogle Scholar
  14. 14.
    Quintanilla, M.A.S., Valverde, J.M., Espin, M.J.: Electrofluidization of silica nanoparticle agglomerates. Ind. Eng. Chem. Res. 51(1), 531–538 (2012). doi: 10.1021/ie200538v CrossRefGoogle Scholar
  15. 15.
    Valverde, J.M., Castellanos, A.: Fluidization, bubbling and jamming of nanoparticle agglomerates. Chem. Eng. Sci. 62(23), 6947–6956 (2007). doi: 10.1016/j.ces.2007.08.050 CrossRefGoogle Scholar
  16. 16.
    Valverde, J.M., Castellanos, A.: Fluidization of nanoparticles: A modified Richardson-Zaki law. AIChE J. 52, 838–842 (2006) CrossRefGoogle Scholar
  17. 17.
    Zhu, C., Yu, Q., Dave, R.N., Pfeffer, R.: Gas fluidization characteristics of nanoparticle agglomerates. AIChE J. 51, 426–439 (2005) CrossRefGoogle Scholar
  18. 18.
    Pfeffer, C.N.R., Dave, R.N., Sundaresan, S.: Aerated vibrofluidization of silica nanoparticles. AIChE J. 50, 1776–1785 (2004) CrossRefGoogle Scholar
  19. 19.
    Sanchez-Lopez, J.C., Fernandez, A.: TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation. Acta Mater. 48, 3761–3771 (2000) CrossRefGoogle Scholar
  20. 20.
    Withers, R.S., Melcher, J.R.: Space-charge effects in aerosol charging and migration. J. Aerosol Sci. 12(4), 307–331 (1981) CrossRefGoogle Scholar
  21. 21.
    Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Electromechanics of fluidized beds of nanoparticles. Phys. Rev. E 79, 011304 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    Valverde, J.M., Castellanos, A., Lepek, D., Quevedo, J., Omosebi, A., Pfeffer, R., Dave, R.N.: The effect of gas viscosity on the agglomerate particulate fluidization state of fine and ultrafine particles. In: CD-ROM Proceedings of World Congress on Particle Technology 5, p. 248. AIChE Conference Proceedings (2006) Google Scholar
  23. 23.
    Chaouki, J., Chavarie, C., Klvana, D., Pajonk, G.: Effect of interparticle forces on the hydrodynamic behavior of fluidized aerogels. Powder Technol. 43, 117–125 (1985) CrossRefGoogle Scholar
  24. 24.
    Matsuda, S., et al.: Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE J. 50, 2763–2771 (2004) CrossRefGoogle Scholar
  25. 25.
    Yu, Q., et al.: Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE J. 51, 1971–1979 (2005) CrossRefGoogle Scholar
  26. 26.
    Hakim, L.F., et al.: Aggregation behavior of nanoparticles in fluidized beds. Powder Technol. 160, 149–160 (2005) CrossRefGoogle Scholar
  27. 27.
    Wang, X.S., Palero, V., Soria, J., Rhodes, M.J.: Laser-based planar imaging of nano-particle fluidization: Part I—Determination of aggregate size and shape. Chem. Eng. Sci. 61, 5476–5486 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations