Skip to main content

Fluidization of Nanopowders

  • Chapter
  • 1301 Accesses

Part of the book series: Particle Technology Series ((POTS,volume 18))

Abstract

Gas-fluidized beds of some nanopowders exhibit a nonbubbling fluid-like behavior as seen for conditioned fine powders. For example, powders of moderate density nanoparticles, such as silica nanoparticles, can be fluidized by a gas in a nonbubbling fluid-like regime. The suppression of macroscopic gas bubbles in fluidized beds of nanoparticles has been causally related to the formation of porous light aggregates. A phenomenological approach described in this chapter to analyze the behavior of gas-fluidized beds of nanoparticles is to consider aggregates as effective lightweight spheres which may exhibit non-bubbling gas-fluidization similarly to coarse beads fluidized by liquids. These complex-aggregates would be formed by a dynamic aggregation of simple-aggregates pre-existing to fluidization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NAN039A: Nanotechnology in environmental applications. Technical report, BCC Research (May 2006)

    Google Scholar 

  2. Stark, J.V., Park, D.G., Lagadic, I., Klabunde, K.J.: Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem. Mater. 8(8), 1904–1912 (1996). doi:10.1021/cm950583p

    Article  Google Scholar 

  3. Koper, O., Klabunde, K.J.: Nanoparticles for the destructive sorption of biological and chemical contaminants. Technical report (May 2000)

    Google Scholar 

  4. Jiradilok, V., Gidaspow, D., Kalra, J., Damronglerd, S., Nitivattananon, S.: Explosive dissemination and flow of nanoparticles. Powder Technol. 164, 33–49 (2006)

    Article  Google Scholar 

  5. Matsuda, S., Hatano, H., Tsutsumi, A.: Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chem. Eng. J. 82, 183–188 (2001)

    Article  Google Scholar 

  6. Hao, Z., Zhu, Q., Jiang, Z., Li, H.: Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4+CO2 reforming. Powder Technol. 183, 46–52 (2008)

    Article  Google Scholar 

  7. Beetstra, R., Lafont, U., Nijenhuis, J., Kelder, E.M., van Ommen, J.R.: Atmospheric pressure process for coating particles using atomic layer deposition. Chem. Vap. Depos. 15, 227–233 (2009)

    Article  Google Scholar 

  8. Voll, M., Kleinschmit, P.: Carbon, 6. Carbon black. In: Ullmann’s Encyclopedia of Industrial Chemistry, vol. 7. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2000). doi:10.1002/14356007.n05_n05

    Google Scholar 

  9. van Ommen, J.R., Valverde, J.M., Pfeffer, R.: Fluidization of nanopowders: A review. J. Nanopart. Res. 14, 737 (2012). doi:10.1007/s11051-012-0737-4

    Article  Google Scholar 

  10. Yao, W., Guangsheng, G., Fei, W., Wu, J.: Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol. 124, 152–159 (2002)

    Article  Google Scholar 

  11. Product information. Technical report, Evonik Degussa GmbH (2011). http://www.aerosil.com/product/aerosil/en/products/hydrophobic-fumed-silica/pages/default.aspx

  12. Hyeon-Lee, J., Beaucage, G., Pratsinis, S.E., Vemury, S.: Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle x-ray scattering. Langmuir 14, 5751–5756 (1998)

    Article  Google Scholar 

  13. Valverde, J.M., Castellanos, A.: Fluidization of nanoparticles: A simple equation for estimating the size of agglomerates. Chem. Eng. J. 140(1–3), 296–304 (2008). doi:10.1016/j.cej.2007.09.032

    Article  Google Scholar 

  14. Quintanilla, M.A.S., Valverde, J.M., Espin, M.J.: Electrofluidization of silica nanoparticle agglomerates. Ind. Eng. Chem. Res. 51(1), 531–538 (2012). doi:10.1021/ie200538v

    Article  Google Scholar 

  15. Valverde, J.M., Castellanos, A.: Fluidization, bubbling and jamming of nanoparticle agglomerates. Chem. Eng. Sci. 62(23), 6947–6956 (2007). doi:10.1016/j.ces.2007.08.050

    Article  Google Scholar 

  16. Valverde, J.M., Castellanos, A.: Fluidization of nanoparticles: A modified Richardson-Zaki law. AIChE J. 52, 838–842 (2006)

    Article  Google Scholar 

  17. Zhu, C., Yu, Q., Dave, R.N., Pfeffer, R.: Gas fluidization characteristics of nanoparticle agglomerates. AIChE J. 51, 426–439 (2005)

    Article  Google Scholar 

  18. Pfeffer, C.N.R., Dave, R.N., Sundaresan, S.: Aerated vibrofluidization of silica nanoparticles. AIChE J. 50, 1776–1785 (2004)

    Article  Google Scholar 

  19. Sanchez-Lopez, J.C., Fernandez, A.: TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation. Acta Mater. 48, 3761–3771 (2000)

    Article  Google Scholar 

  20. Withers, R.S., Melcher, J.R.: Space-charge effects in aerosol charging and migration. J. Aerosol Sci. 12(4), 307–331 (1981)

    Article  Google Scholar 

  21. Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Electromechanics of fluidized beds of nanoparticles. Phys. Rev. E 79, 011304 (2009)

    Article  ADS  Google Scholar 

  22. Valverde, J.M., Castellanos, A., Lepek, D., Quevedo, J., Omosebi, A., Pfeffer, R., Dave, R.N.: The effect of gas viscosity on the agglomerate particulate fluidization state of fine and ultrafine particles. In: CD-ROM Proceedings of World Congress on Particle Technology 5, p. 248. AIChE Conference Proceedings (2006)

    Google Scholar 

  23. Chaouki, J., Chavarie, C., Klvana, D., Pajonk, G.: Effect of interparticle forces on the hydrodynamic behavior of fluidized aerogels. Powder Technol. 43, 117–125 (1985)

    Article  Google Scholar 

  24. Matsuda, S., et al.: Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE J. 50, 2763–2771 (2004)

    Article  Google Scholar 

  25. Yu, Q., et al.: Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE J. 51, 1971–1979 (2005)

    Article  Google Scholar 

  26. Hakim, L.F., et al.: Aggregation behavior of nanoparticles in fluidized beds. Powder Technol. 160, 149–160 (2005)

    Article  Google Scholar 

  27. Wang, X.S., Palero, V., Soria, J., Rhodes, M.J.: Laser-based planar imaging of nano-particle fluidization: Part I—Determination of aggregate size and shape. Chem. Eng. Sci. 61, 5476–5486 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valverde Millán, J.M. (2013). Fluidization of Nanopowders. In: Fluidization of Fine Powders. Particle Technology Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5587-1_9

Download citation

Publish with us

Policies and ethics