The Modified Geldart’s Diagram

Part of the Particle Technology Series book series (POTS, volume 18)


The Geldart’s classical diagram is not useful to predict whether a fine powder might display nonbubbling fluidlike gas-fluidization of conditioned fine powders as due to dynamic aggregation. Since this new type of behavior bears many similarities to liquid-fluidization, a possible approach is to adapt the semi-empirical equations formulated to analyze the behavior of granular materials fluidized by liquids to gas-fluidization of fine conditioned powders.


Fractal Dimension Particle Volume Fraction Fluidization Behavior Interparticle Force Random Close Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Physics of compaction of fine powders. Phys. Rev. Lett. 94, 075501 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    Valverde, J.M., Castellanos, A.: Fluidization of nanoparticles: A modified Richardson-Zaki law. AIChE J. 52, 838–842 (2006) CrossRefGoogle Scholar
  3. 3.
    Valverde, J.M., Castellanos, A., Mills, P., Quintanilla, M.A.S.: Effect of particle size and interparticle force on the fluidization behavior of gas-fluidized beds. Phys. Rev. E 67, 051305 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Self-diffusion in a gas-fluidized bed of fine powder. Phys. Rev. Lett. 86, 3020–3023 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    Valverde, J.M., Quintanilla, M.A.S., Castellanos, A., Mills, P.: Experimental study on the dynamics of gas-fluidized beds. Phys. Rev. E 67, 016303 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Jamming threshold of dry fine powders. Phys. Rev. Lett. 92, 258303 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Valverde, J.M., Castellanos, A.: Types of gas fluidization of cohesive granular materials. Phys. Rev. E 75(3), 031306 (2007). doi: 10.1103/PhysRevE.75.031306 ADSCrossRefGoogle Scholar
  8. 8.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys. Rev. E. 64, 041304 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    Molerus, O.: Interpretation of Geldart’s type A, B, C, and D powders by taking into account interparticle cohesion forces. Powder Technol. 33, 81–87 (1982) CrossRefGoogle Scholar
  11. 11.
    Rhodes, M.J., Wang, X.S., Nguyen, M., Stewart, P., Liffman, K.: Use of discrete element method simulation in studying fluidization characteristics: Influence of interparticle force. Chem. Eng. Sci. 56, 69–76 (2001) CrossRefGoogle Scholar
  12. 12.
    Tsinontides, S.C., Jackson, R.: The mechanics of gas fluidized bed with an interval of stable fluidization. J. Fluid Mech. 255, 237–274 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    Rietema, K.: The Dynamics of Fine Powders. Elsevier, London (1991) CrossRefGoogle Scholar
  14. 14.
    Valverde, J.M., Castellanos, A.: High viscosity gas fluidization of fine particles: An extended window of quasi-homogeneous flow. Phys. Rev. E 74, 021302 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Valverde, J.M., Castellanos, A., Lepek, D., Quevedo, J., Omosebi, A., Pfeffer, R., Dave, R.N.: The effect of gas viscosity on the agglomerate particulate fluidization state of fine and ultrafine particles. In: CD-ROM Proceedings of World Congress on Particle Technology 5, p. 248. AIChE Conference Proceedings (2006) Google Scholar
  16. 16.
    Saxena, S.C., Wu, W.Y.: Hydrodynamic characteristics of magnetically stabilized fluidized admixture beds of iron and copper particles. Can. J. Chem. Eng. 77, 312–318 (1999) CrossRefGoogle Scholar
  17. 17.
    Hristov, J.Y.: Fluidization of ferromagnetic particles in a magnetic field. Part 2: Field effects of preliminarily fluidized beds. Powder Technol. 97, 35–44 (1998) CrossRefGoogle Scholar
  18. 18.
    Schubert, H.: Capillary forces-modeling and application in particulate technology. Powder Technol. 37(1), 105–116 (1984) CrossRefGoogle Scholar
  19. 19.
    Formisani, B., Girimonte, R., Pataro, G.: The influence of operating temperature on the dense phase properties of bubbling fluidized beds of solids. Powder Technol. 125, 28–38 (2002) CrossRefGoogle Scholar
  20. 20.
    Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981) ADSCrossRefGoogle Scholar
  21. 21.
    Manley, S., et al.: Limits to gelation in colloidal aggregation. Phys. Rev. Lett. 93, 108302 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    Geldart, D.: Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973). doi: 10.1016/0032-5910(73)80037-3 CrossRefGoogle Scholar
  23. 23.
    Harrison, D., Davidson, J.F., de Kock, J.W.: On the nature of aggregative and particulate fluidisation. Trans. Inst. Chem. Eng. 39, 202–211 (1961) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations