Dynamic Aggregation of Fine Particles in Gas-Fluidized Beds

Part of the Particle Technology Series book series (POTS, volume 18)


Individual fine particles suspended in a gas flow undergo a process of aggregation due to interparticle attraction. As the aggregate grows in size, the gas drag force on the surface of the aggregate increases to compensate the aggregate weight. Thus, the size of the aggregate becomes limited by the balance between the shear force exerted by the gas on the particles in the aggregate outer ring and interparticle attractive force. In this chapter, a fundamental equation is developed to predict the size of these dynamic aggregates.


Fractal Dimension Fractal Aggregate Dynamic Aggregation Interparticle Force Dynamic Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gady, B., Schleef, D., Reifenberger, R., Rimai, D., DeMejo, L.P.: Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. Phys. Rev. B 53, 8065–8070 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    Hamaker, H.C.: The London-van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937) ADSCrossRefGoogle Scholar
  3. 3.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    Krupp, H.: Particle adhesion. Theory and experiment. Adv. Colloid Interface Sci. 1, 111–239 (1967) CrossRefGoogle Scholar
  5. 5.
    Massimilla, L., Donsi, G.: Cohesive forces between particles of fluid-bed catalysts. Powder Technol. 15(2), 253–260 (1976) CrossRefGoogle Scholar
  6. 6.
    Rietema, K.: The Dynamics of Fine Powders. Elsevier, London (1991) CrossRefGoogle Scholar
  7. 7.
    Schaeffer, D.M., Carpenter, M., Gady, B., Reifenberger, R., DeMejo, L.P., Rimai, D.S.: Surface roughness and its influence on particle adhesion using atomic force techniques. In: Rimai, D.S., DeMejo, L.P., Mittal, K.L. (eds.) Fundamentals of Adhesion and Interfaces, pp. 35–48. VSP, Utrecht, The Netherlands (1995) Google Scholar
  8. 8.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    Feng, J.Q.: Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E 62, 2891–2897 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    Bauccio, M. (ed.): ASM Engineered Materials Reference Book, 2nd edn. ASM International, Materials Park (1994) Google Scholar
  11. 11.
    Glor, M.: Hazards due to electrostatic charging of powders. J. Electrost. 16, 175–191 (1985) CrossRefGoogle Scholar
  12. 12.
    Hays, D.A.: Adhesion of charged particles. In: Rimai, D.S., DeMejo, L.P., Mittal, K.L. (eds.) Fundamentals of Adhesion and Interfaces, pp. 61–71. VSP, Utrecht, The Netherlands (1995) Google Scholar
  13. 13.
    Hendricks, C.D.: Electrostatic imaging. In: Moore, A.D. (ed.) Electrostatics and Its Applications, pp. 281–306. John Wiley & Sons, New York (1973) Google Scholar
  14. 14.
    Valverde, J.M., Quintanilla, M.A.S., Espin, M.J., Castellanos, A.: Nanofluidization electrostatics. Phys. Rev. E 77, 031301 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    Sutherland, D.N., Tan, C.T.: Sedimentation of a porous sphere. Chem. Eng. Sci. 25(12), 1948–1950 (1970). doi: 10.1016/0009-2509(70)87013-0 CrossRefGoogle Scholar
  16. 16.
    Zhu, C., Yu, Q., Dave, R.N., Pfeffer, R.: Gas fluidization characteristics of nanoparticle agglomerates. AIChE J. 51, 426–439 (2005) CrossRefGoogle Scholar
  17. 17.
    Nguyen, H.P., Chopard, B., Stoll, S.: Hydrodynamic properties of fractal aggregates in 2D using lattice Boltzmann simulation. Future Gener. Comput. Syst. 20, 981–991 (2004) CrossRefGoogle Scholar
  18. 18.
    Chopard, B., Nguyen, H., Stoll, S.: A lattice Boltzmann study of the hydrodynamic properties of 3D fractal aggregates. Math. Comput. Simul. 72, 103–107 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys. Rev. E. 64, 041304 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981) ADSCrossRefGoogle Scholar
  21. 21.
    Kantor, Y., Witten, T.A.: Mechanical stability of tenuous objects. J. Phys. Lett. 45, 675–679 (1984) CrossRefGoogle Scholar
  22. 22.
    Manley, S., et al.: Limits to gelation in colloidal aggregation. Phys. Rev. Lett. 93, 108302 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    Kantor, Y., Webman, I.: Elastic properties of random percolating systems. Phys. Rev. Lett. 52, 1891–1894 (1984) ADSCrossRefGoogle Scholar
  24. 24.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The transitional behavior of avalanches in cohesive granular materials. J. Stat. Mech. Theory Exp. 7, 07015 (2006) CrossRefGoogle Scholar
  25. 25.
    Valverde, J.M., Castellanos, A.: High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow. Phys. Rev. E 74, 021302 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    Valverde, J.M., Quintanilla, M.A.S., Castellanos, A., Mills, P.: The settling of fine cohesive powders. Europhys. Lett. 54, 329–334 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    Pfeffer, C.N.R., Dave, R.N., Sundaresan, S.: Aerated vibrofluidization of silica nanoparticles. AIChE J. 50, 1776–1785 (2004) CrossRefGoogle Scholar
  28. 28.
    Valverde, J.M., Castellanos, A.: Random loose packing of cohesive granular materials. Europhys. Lett. 75(6), 985–991 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations