Advertisement

On the Question of Fluid-Like Fluidization Stability

Chapter
  • 1.2k Downloads
Part of the Particle Technology Series book series (POTS, volume 18)

Abstract

As reviewed in the previous chapter, there exists a class of fine powders which can be fluidized by a gas in a fluid-like regime and in the absence of macroscopic bubbles. A fundamental question still pending is whether this nonbubbling state can be really considered as a stable state. In spite that many experimental observations seem to deny this possibility, some theoretical works have been devoted to investigate the onset of bubbling in beds of solid particles fluidized by gas in a fluid-like regime by means of linear stability analyses.

Keywords

Froude Number Discrete Element Method Linear Stability Analysis Particle Volume Fraction Elastic Wave Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wallis, G.B.: One Dimensional Two-Phase Flow. McGraw-Hill, New York (1969) Google Scholar
  2. 2.
    Batchelor, G.K.: A new theory on the instability of a uniform fluidized bed. J. Fluid Mech. 193, 75–110 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Jackson, R.: The Dynamics of Fluidized Particles. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  4. 4.
    Rietema, K., Cottaar, E.J.E., Piepers, H.W.: The effects of interparticle forces on the stability of gas-fludised beds-II. Theoretical derivation of bed elasticity on the basis of van der Waals forces between powder particles. Chem. Eng. Sci. 48(9), 1687–1697 (1993) CrossRefGoogle Scholar
  5. 5.
    Sundaresan, S.: Instabilities in fluidized bed. Annu. Rev. Fluid Mech. 35, 63–88 (2003) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Zenit, R., Hunt, M.L., Brennen, C.E.: Collisional particle pressure measurements in solid-liquid flows. J. Fluid Mech. 353, 261–283 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    Guazzelli, E.: Fluidized beds: From waves to bubbles. In: The Physics of Granular Media, p. 213. Wiley-VCH, Berlin (2004) Google Scholar
  8. 8.
    Verloop, J., Heertjes, P.M.: Shock waves as a criterion for the transition from homogeneous to heterogeneous fluidization. Chem. Eng. Sci. 25(5), 825–832 (1970) CrossRefGoogle Scholar
  9. 9.
    Foscolo, P.U., Gibilaro, L.G.: A fully predictive criterion for the transition between particulate and aggregate fluidization. Chem. Eng. Sci. 39, 1667–1675 (1984) CrossRefGoogle Scholar
  10. 10.
    Rietema, K.: The Dynamics of Fine Powders. Elsevier, London (1991) CrossRefGoogle Scholar
  11. 11.
    Busciglio, A., Micale, G., Vella, G., Rizzuti, L.: Linear stability analysis of gas-fluidized beds for the prediction of incipient bubbling conditions. Chem. Eng. J. 157, 489–500 (2010) CrossRefGoogle Scholar
  12. 12.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Self-diffusion in a gas-fluidized bed of fine powder. Phys. Rev. Lett. 86, 3020–3023 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    Valverde, J.M., Quintanilla, M.A.S., Castellanos, A., Mills, P.: Experimental study on the dynamics of gas-fluidized beds. Phys. Rev. E 67, 016303 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    Savelsberg, R., Demco, D.E., Blumich, B., Stapf, S.: Particle motion in gas-fluidized granular systems by pulsed-field gradient nuclear magnetic resonance. Phys. Rev. E 65, 020301 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    Segrè, P.N., et al.: Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett. 86(26 I), 6042–6045 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    Cowan, M.L., Page, J.H., Weitz, D.A.: Velocity fluctuations in fluidized suspensions probed by ultrasonic correlation spectroscopy. Phys. Rev. Lett. 85(2), 453–456 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    Koch, D.L., Sangani, A.S.: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: Kinetic theory and numerical simulations. J. Fluid Mech. 400, 229–263 (1999) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Kobayashi, T., Kawaguchi, T., Tanaka, T., Tsuji, Y.: Proc. of world congress on particle technology 4. In: CD-ROM. AIChE Conference Proceedings (2002) Google Scholar
  19. 19.
    Ramaswamy, S.: Issues in the statistical mechanics of steady sedimentation. Adv. Phys. 50(3), 297–341 (2001) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Duru, P., Guazzelli, E.: Experimental investigation of the secondary instability of liquid-fluidized beds and the formation of bubbles. J. Fluid Mech. 470, 359–382 (2002) ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Agrawal, K., Loezos, P.N., Syamlal, M., Sundaresan, S.: The role of meso-scale structure in rapid gas-solid flows. J. Fluid Mech. 445, 151–181 (2001) ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Glasser, B.J., Kevrekidis, I.G., Sundaresan, S.: Fully developed traveling wave solutions and bubble formation in fluidized beds. J. Fluid Mech. 334, 157–188 (1997) ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Homsy, G.M.: Nonlinear waves and the original of bubbles in fluidized beds. Appl. Sci. Res. 58, 251–274 (1998) ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Foscolo, P.U., Gibilaro, L.G.: Fluid dynamic stability of fluidised suspensions: The particle bed model. Chem. Eng. Sci. 42(6), 1489–1500 (1987) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations