Magnetic Stabilization of Fluidized Beds of Magnetizable Particles

Part of the Particle Technology Series book series (POTS, volume 18)


In the previous chapter, a number of works were reviewed that showed that gas-fluidized beds can only be stabilized in a nonbubbling regime when interparticle attractive forces become comparable to particle weight. In the absence of sufficiently strong natural attractive forces, interparticle forces may be induced by an external field, which may lead to stabilization. This is the case considered in this chapter, in which the externally imposed magnetic field induce attractive contact forces between the particles.


Particle Volume Fraction Horizontal Field Consolidation Stress Magnetic Body Force Magnetic Density Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Siegell, J.H.: Early studies of magnetized-fluidized beds. Powder Technol. 57, 213–220 (1989) CrossRefGoogle Scholar
  2. 2.
    Rosensweig, R.E.: Fluidization: Hydrodynamic stabilization with a magnetic field. Science 204, 57–60 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    Siegell, J.H., Coulaloglou, C.A.: Magnetically stabilized fluidized beds with continuous solids throughput. Powder Technol. 39, 215–222 (1984) CrossRefGoogle Scholar
  4. 4.
    Lee, W.K.: The rheology of magnetically stabilized fluidized solids. AIChE Symp. Ser. 79, 87–96 (1983) Google Scholar
  5. 5.
    Lee, W.K.: A review of the rheology of magnetically stabilized fluidized beds. Powder Technol. 64, 69–80 (1991) CrossRefGoogle Scholar
  6. 6.
    Siegell, J.H.: Magnetically frozen beds. Powder Technol. 55, 127–132 (1988) CrossRefGoogle Scholar
  7. 7.
    Rosensweig, R.E.: Magnetic stabilization of the state of uniform fluidization. Ind. Eng. Chem. Fundam. 18, 260–269 (1979) CrossRefGoogle Scholar
  8. 8.
    Rosensweig, R.E.: Ferrohydrodynamics. Dover Publications, New York (1997) Google Scholar
  9. 9.
    Rosensweig, R.E., Ciprios, G.: Magnetic liquid stabilization of fluidization in a bed of nonmagnetic spheres. Powder Technol. 64, 115–123 (1991) CrossRefGoogle Scholar
  10. 10.
    Hristov, J.Y.: Fluidization of ferromagnetic particles in a magnetic field. 1. The effect of field line orientation on bed stability. Powder Technol. 87, 59–66 (1996) CrossRefGoogle Scholar
  11. 11.
    Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Stabilization of gas-fluidized beds of magnetic powders by a cross-flow magnetic field. J. Fluid Mech. 680, 80–113 (2011) zbMATHCrossRefGoogle Scholar
  12. 12.
    Espin, M.J., Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: Rheology of magnetofluidized fine powders: The role of interparticle contact forces. J. Rheol. 54, 719–740 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Magnetic field induced inversion in the effect of particle size on powder cohesiveness. J. Chem. Phys. 133, 024706 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Valverde, J.M., Espin, M.J., Quintanilla, M.A.S., Castellanos, A.: Fluid to solid transition in magnetofluidized beds of fine powders. J. Appl. Phys. 108, 054903 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Espin, M.J., Valverde, J.M., Quintanilla, M.A.S.: The yield stress of jammed magnetofluidized beds. Granul. Matter (2012) Google Scholar
  16. 16.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    Rumpf, H.: Grundlagen and methoden des granulierens. Chem. Ing. Tech. 30, 144–158 (1958) CrossRefGoogle Scholar
  18. 18.
    Suzuki, M., Makino, K., Yamada, M., Iinoya, K.: Study on the coordination number in a system of randomly packed, uniform-sized spherical particles. Int. Chem. Eng. 21, 482–488 (1981) Google Scholar
  19. 19.
    Klingenberg, D.J., Swol, F.V., Zukoski, C.F.: The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J. Chem. Phys. 94(9), 6170–6178 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    Clercx, H., Bossis, G.: Many-body electrostatic interactions in electrorheological fluids. Phys. Rev. E 48, 2721–2738 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    Valverde, J.M., Quintanilla, M.A.S., Espin, M.J.: Effects of particle size and field orientation on the yield stress of magnetostabilized fluidized beds. Ind. Eng. Chem. Res. 51, 8134–8140 (2012) CrossRefGoogle Scholar
  22. 22.
    de Gans, B.J., Duin, N.J., van den Ende, D., Mellema, J.: The influence of particle size on the magnetorheological properties of an inverse ferrofluid. J. Chem. Phys. 113, 2032–2042 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    Jun, J.-B., et al.: Bidisperse electrorheological fluids using hydrolyzed styrene-acrylonitrile copolymer particles: Synergistic effect of mixed particle size. Langmuir 20, 2429–2434 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations