Skip to main content

Magnetic Stabilization of Fluidized Beds of Magnetizable Particles

  • Chapter

Part of the book series: Particle Technology Series ((POTS,volume 18))

Abstract

In the previous chapter, a number of works were reviewed that showed that gas-fluidized beds can only be stabilized in a nonbubbling regime when interparticle attractive forces become comparable to particle weight. In the absence of sufficiently strong natural attractive forces, interparticle forces may be induced by an external field, which may lead to stabilization. This is the case considered in this chapter, in which the externally imposed magnetic field induce attractive contact forces between the particles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegell, J.H.: Early studies of magnetized-fluidized beds. Powder Technol. 57, 213–220 (1989)

    Article  Google Scholar 

  2. Rosensweig, R.E.: Fluidization: Hydrodynamic stabilization with a magnetic field. Science 204, 57–60 (1979)

    Article  ADS  Google Scholar 

  3. Siegell, J.H., Coulaloglou, C.A.: Magnetically stabilized fluidized beds with continuous solids throughput. Powder Technol. 39, 215–222 (1984)

    Article  Google Scholar 

  4. Lee, W.K.: The rheology of magnetically stabilized fluidized solids. AIChE Symp. Ser. 79, 87–96 (1983)

    Google Scholar 

  5. Lee, W.K.: A review of the rheology of magnetically stabilized fluidized beds. Powder Technol. 64, 69–80 (1991)

    Article  Google Scholar 

  6. Siegell, J.H.: Magnetically frozen beds. Powder Technol. 55, 127–132 (1988)

    Article  Google Scholar 

  7. Rosensweig, R.E.: Magnetic stabilization of the state of uniform fluidization. Ind. Eng. Chem. Fundam. 18, 260–269 (1979)

    Article  Google Scholar 

  8. Rosensweig, R.E.: Ferrohydrodynamics. Dover Publications, New York (1997)

    Google Scholar 

  9. Rosensweig, R.E., Ciprios, G.: Magnetic liquid stabilization of fluidization in a bed of nonmagnetic spheres. Powder Technol. 64, 115–123 (1991)

    Article  Google Scholar 

  10. Hristov, J.Y.: Fluidization of ferromagnetic particles in a magnetic field. 1. The effect of field line orientation on bed stability. Powder Technol. 87, 59–66 (1996)

    Article  Google Scholar 

  11. Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Stabilization of gas-fluidized beds of magnetic powders by a cross-flow magnetic field. J. Fluid Mech. 680, 80–113 (2011)

    Article  MATH  Google Scholar 

  12. Espin, M.J., Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: Rheology of magnetofluidized fine powders: The role of interparticle contact forces. J. Rheol. 54, 719–740 (2010)

    Article  ADS  Google Scholar 

  13. Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Magnetic field induced inversion in the effect of particle size on powder cohesiveness. J. Chem. Phys. 133, 024706 (2010)

    Article  ADS  Google Scholar 

  14. Valverde, J.M., Espin, M.J., Quintanilla, M.A.S., Castellanos, A.: Fluid to solid transition in magnetofluidized beds of fine powders. J. Appl. Phys. 108, 054903 (2010)

    Article  ADS  Google Scholar 

  15. Espin, M.J., Valverde, J.M., Quintanilla, M.A.S.: The yield stress of jammed magnetofluidized beds. Granul. Matter (2012)

    Google Scholar 

  16. Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005)

    Article  ADS  Google Scholar 

  17. Rumpf, H.: Grundlagen and methoden des granulierens. Chem. Ing. Tech. 30, 144–158 (1958)

    Article  Google Scholar 

  18. Suzuki, M., Makino, K., Yamada, M., Iinoya, K.: Study on the coordination number in a system of randomly packed, uniform-sized spherical particles. Int. Chem. Eng. 21, 482–488 (1981)

    Google Scholar 

  19. Klingenberg, D.J., Swol, F.V., Zukoski, C.F.: The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J. Chem. Phys. 94(9), 6170–6178 (1991)

    Article  ADS  Google Scholar 

  20. Clercx, H., Bossis, G.: Many-body electrostatic interactions in electrorheological fluids. Phys. Rev. E 48, 2721–2738 (1993)

    Article  ADS  Google Scholar 

  21. Valverde, J.M., Quintanilla, M.A.S., Espin, M.J.: Effects of particle size and field orientation on the yield stress of magnetostabilized fluidized beds. Ind. Eng. Chem. Res. 51, 8134–8140 (2012)

    Article  Google Scholar 

  22. de Gans, B.J., Duin, N.J., van den Ende, D., Mellema, J.: The influence of particle size on the magnetorheological properties of an inverse ferrofluid. J. Chem. Phys. 113, 2032–2042 (2000)

    Article  ADS  Google Scholar 

  23. Jun, J.-B., et al.: Bidisperse electrorheological fluids using hydrolyzed styrene-acrylonitrile copolymer particles: Synergistic effect of mixed particle size. Langmuir 20, 2429–2434 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valverde Millán, J.M. (2013). Magnetic Stabilization of Fluidized Beds of Magnetizable Particles. In: Fluidization of Fine Powders. Particle Technology Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5587-1_3

Download citation

Publish with us

Policies and ethics