Advertisement

The Structure of Geldart A Gas-Fluidized Beds

Chapter
  • 1.2k Downloads
Part of the Particle Technology Series book series (POTS, volume 18)

Abstract

The question of the structure of stably fluidized beds of Geldart A powders has been a subject of controversy for many years. Although some works have suggested the fluid-like nature of this stable state, most empirical observations and numerical analysis have indicated otherwise. According to these studies, a gas-fluidized bed can only be stabilized in a nonbubbling regime by interparticle attractive forces. These interparticle forces would hold particles together at permanent positions, conferring on the expanded fluidized bed a solid-like structure whose weight is sustained by not only the gas flow but also in part by enduring interparticle contacts.

Keywords

Linear Stability Analysis Hydrodynamic Interaction Granular Temperature Interparticle Force Tensile Yield Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Self-diffusion in a gas-fluidized bed of fine powder. Phys. Rev. Lett. 86, 3020–3023 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    Jackson, R.: The Dynamics of Fluidized Particles. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  3. 3.
    Jackson, R.: The mechanics of fluidized beds. Trans. Am. Inst. Chem. Eng. 41, 13–28 (1963) Google Scholar
  4. 4.
    Foscolo, P.U., Gibilaro, L.G.: A fully predictive criterion for the transition between particulate and aggregate fluidization. Chem. Eng. Sci. 39, 1667–1675 (1984) CrossRefGoogle Scholar
  5. 5.
    Batchelor, G.K.: A new theory on the instability of a uniform fluidized bed. J. Fluid Mech. 193, 75–110 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Rietema, K.: The effect of interparticle forces on the expansion of a homogeneous gas-fluidised bed. Chem. Eng. Sci. 28, 1493–1497 (1973) CrossRefGoogle Scholar
  7. 7.
    Rietema, K.: The Dynamics of Fine Powders. Elsevier, London (1991) CrossRefGoogle Scholar
  8. 8.
    Donsi, G., Formisani, B., Valentino, R., Volpicelli, G.: The measurement of characteristic angles of powders in the prediction of their behaviour in the gas fluidized state. Powder Technol. 37, 39–47 (1984) CrossRefGoogle Scholar
  9. 9.
    Gilbertson, M.A., Yates, J.G.: The tilting fluidized bed: A re-examination. Powder Technol. 89, 29–36 (1996) CrossRefGoogle Scholar
  10. 10.
    Cody, G.D., Goldfarb, D.J., Storch, J.G.V., Norris, A.N.: Particle granular temperature in gas fluidized beds. Powder Technol. 87(3), 211–232 (1996) CrossRefGoogle Scholar
  11. 11.
    Tsinontides, S.C., Jackson, R.: The mechanics of gas fluidized bed with an interval of stable fluidization. J. Fluid Mech. 255, 237–274 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    Loezos, P.N., Costamagna, P., Sundaresan, S.: The role of contact stresses and wall friction on fluidization. Chem. Eng. Sci. 57, 5123–5141 (2002) CrossRefGoogle Scholar
  13. 13.
    Menon, N., Durian, D.J.: Particle motions in a gas-fluidized bed of sand. Phys. Rev. Lett. 79, 3407–3410 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    Marzocchella, A., Salatino, P.: Fluidization of solids with CO2 at pressures from ambient to supercritical. AIChE J. 46(5), 901–910 (2000) CrossRefGoogle Scholar
  15. 15.
    Espin, M.J., Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: Rheology of magnetofluidized fine powders: The role of interparticle contact forces. J. Rheol. 54, 719–740 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    Pandit, J.K., Rhodes, X.S.W.M.J.: On Geldart group a behaviour in fluidized beds with and without cohesive interparticle forces: A DEM study. Powder Technol. 164, 130–138 (2006) CrossRefGoogle Scholar
  17. 17.
    Ye, M., van der Hoef, M.A., Kuipers, J.A.M.: The effects of particle and gas properties on the fluidization of Geldart a particles. Chem. Eng. Sci. 60, 4567–4580 (2005) CrossRefGoogle Scholar
  18. 18.
    Rietema, K., Cottaar, E.J.E., Piepers, H.W.: The effects of interparticle forces on the stability of gas-fludised beds-II. Theoretical derivation of bed elasticity on the basis of van der Waals forces between powder particles. Chem. Eng. Sci. 48(9), 1687–1697 (1993) CrossRefGoogle Scholar
  19. 19.
    Valverde, J.M., Castellanos, A., Watson, P.K.: The effect of particle size on interparticle adhesive forces for small loads. Powder Technol. 118(3), 236–241 (2001) CrossRefGoogle Scholar
  20. 20.
    Valverde, J.M., Ramos, A., Castellanos, A., Watson, P.K.: The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity. Powder Technol. 97, 237–245 (1998) CrossRefGoogle Scholar
  21. 21.
    Quintanilla, M.A.S., Castellanos, A., Valverde, J.M.: Correlation between bulk stresses and interparticle contact forces in fine powders. Phys. Rev. E 64, 031301 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    Chen, Y., Yang, J., Dave, R.N., Pfeffer, R.: Granulation of cohesive Geldart group C powders in a mini-glatt fluidized bed by pre-coating with nanoparticles. Powder Technol. 191, 206–217 (2009) CrossRefGoogle Scholar
  23. 23.
    Sundaresan, S.: Instabilities in fluidized bed. Annu. Rev. Fluid Mech. 35, 63–88 (2003) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Koch, D.L., Sangani, A.S.: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: Kinetic theory and numerical simulations. J. Fluid Mech. 400, 229–263 (1999) ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Seville, J.P.K., Clift, R.C.: The effect of thin liquid layers on fluidization characteristics. Powder Technol. 37, 117–129 (1984) CrossRefGoogle Scholar
  26. 26.
    Xie, H.-Y., Geldart, D.: Fluidization of fcc powders in the bubble-free regime: Effect types of gases and temperature. Powder Technol. 82, 269–277 (1995) CrossRefGoogle Scholar
  27. 27.
    Johnson, T.W., Melcher, J.R.: Electromechanics of electrofluidized beds. Ind. Eng. Chem. Fundam. 14, 146–153 (1975) CrossRefGoogle Scholar
  28. 28.
    van Willigen, F.K., Demirbas, B., Deen, N.G., Kuipers, J.A.M., van Ommen, J.R.: Discrete particle simulations of an electric-field enhanced fluidized bed. Powder Technol. 183, 196–206 (2008) CrossRefGoogle Scholar
  29. 29.
    Colver, G.M.: The effect of van der Waals and charge induced forces on bed modulus of elasticity in ac/dc electrofluidized beds of fine powders—a unified theory. Chem. Eng. Sci. 61, 2301–2311 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations