Fluidization Assistance Techniques

Part of the Particle Technology Series book series (POTS, volume 18)


Cohesive aggregation in fine powders usually hinders nonbubbling fluid-like fluidization. Different techniques have been developed in the last few years to assist fluidization by helping the gas flow to mobilize and break cohesive aggregates, which serves to turn the Geldart C cohesive fluidization behavior into fluid-like fluidization. As reviewed in this chapter, the use of these techniques may have a relevant impact on novel processes based on fluidized beds with applications in newly developed technologies such as Atomic Layer Deposition in nanoparticle fluidized beds and CO2 capture by fluidized beds of Ca-based particles.


Atomic Layer Deposition Lightweight Aggregate Nonuniform Electric Field Solid Circulation Rate Cohesive Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Geldart, D.: Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973). doi: 10.1016/0032-5910(73)80037-3 CrossRefGoogle Scholar
  2. 2.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The transitional behaviour of avalanches in cohesive granular materials. J. Stat. Mech. P07015, 1–26 (2006) Google Scholar
  3. 3.
    Lauga, C., Chaouki, J., Klvana, D., Chavarie, C.: Improvement of the fluidisability of Ni/SiO2 aerogels by reducing interparticle forces. Powder Technol. 65, 461–468 (1991) CrossRefGoogle Scholar
  4. 4.
    Ajbar, A., Bakhbakhi, Y., Ali, S., Asif, M.: Fluidization of nano-powders: Effect of sound vibration and pre-mixing with group a particles. Powder Technol. 206(3), 327–337 (2011). doi: 10.1016/j.powtec.2010.09.038 CrossRefGoogle Scholar
  5. 5.
    Valverde, J.M., Ramos, A., Castellanos, A., Watson, P.K.: The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity. Powder Technol. 97, 237–245 (1998) CrossRefGoogle Scholar
  6. 6.
    Pfeffer, C.N.R., Dave, R.N., Sundaresan, S.: Aerated vibrofluidization of silica nanoparticles. AIChE J. 50, 1776–1785 (2004) CrossRefGoogle Scholar
  7. 7.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A., Lepek, D., Pfeffer, R., Dave, R.N.: Nanofluidization as affected by vibration and electrostatic fields. Chem. Eng. Sci. 63, 5559–5569 (2008) CrossRefGoogle Scholar
  8. 8.
    Zhu, C., Liu, G., Yu, Q., Pfeffer, R., Dave, R., Nam, C.H.: Sound assisted fluidization of nanoparticle agglomerates. Powder Technol. 141, 119–123 (2004) CrossRefGoogle Scholar
  9. 9.
    Quevedo, J., et al.: Fluidization of nanoagglomerates in a rotating fluidized bed. AIChE J. 52, 2401–2412 (2006) CrossRefGoogle Scholar
  10. 10.
    Lepek, D., Valverde, J.M., Pfeffer, R., Dave, R.N.: Enhanced nanofluidization by alternating electric fields. AIChE J. 56, 54–65 (2010) Google Scholar
  11. 11.
    Quintanilla, M.A.S., Valverde, J.M., Espin, M.J., Castellanos, A.: Electrofluidization of silica nanoparticle agglomerates. Ind. Eng. Chem. Res. 51, 531–538 (2012) CrossRefGoogle Scholar
  12. 12.
    Yu, Q., et al.: Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE J. 51, 1971–1979 (2005) CrossRefGoogle Scholar
  13. 13.
    van Ommen, J.R., Yurteri, C.U., Ellis, N., Kelder, E.M.: Scalable gas-phase processes to create nanostructured particles. Particuology 8, 572–577 (2010) CrossRefGoogle Scholar
  14. 14.
    Quevedo, J.A., Omosebi, A., Pfeffer, R.: Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets. AIChE J. 56(6), 1456–1468 (2010) Google Scholar
  15. 15.
    van Ommen, J.R., Valverde, J.M., Pfeffer, R.: Fluidization of nanopowders: A review. J. Nanopart Res. 14, 737 (2012). doi: 10.1007/s11051-012-0737-4 CrossRefGoogle Scholar
  16. 16.
    Beetstra, R., Lafont, U., Nijenhuis, J., Kelder, E.M., van Ommen, J.R.: Atmospheric pressure process for coating particles using atomic layer deposition. Chem. Vap. Depos. 15, 227–233 (2009) CrossRefGoogle Scholar
  17. 17.
    Martinez, I., Murillo, R., Grasa, G., Rodriguez, N., Abanades, J.C.: Conceptual design of a three fluidised beds combustion system capturing CO2 with CaO. Int. J. Greenh. Gas Control 5(3), 498–504 (2011). doi: 10.1016/j.ijggc.2010.04.017 CrossRefGoogle Scholar
  18. 18.
    Hakim, L.F., et al.: Aggregation behavior of nanoparticles in fluidized beds. Powder Technol. 160, 149–160 (2005) CrossRefGoogle Scholar
  19. 19.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The transitional behavior of avalanches in cohesive granular materials. J. Stat. Mech. Theory Exp. 7, 07015 (2006) CrossRefGoogle Scholar
  20. 20.
    Yang, W.C.: Fluidization of fine cohesive powders and nanoparticles—A review. J. Chin. Inst. Chem. Eng. 36, 1–15 (2005) ADSGoogle Scholar
  21. 21.
    Valverde, J.M., Pontiga, F., Soria-Hoyo, C., Quintanilla, M.A.S., Moreno, H., Duran, F.J., Espin, M.J.: Improving the gas solids contact efficiency in a fluidized bed of CO2 adsorbent fine particles. Phys. Chem. Chem. Phys. 13, 14906–14909 (2011). doi: 10.1039/c1cp21939a CrossRefGoogle Scholar
  22. 22.
    Valverde, J.M., Duran, F.J., Pontiga, F., Moreno, H.: CO2 capture enhancement in a fluidized bed of a modified Geldart C powder. Powder Technol. 224, 247–252 (2012). doi: 10.1016/j.powtec.2012.02.060 CrossRefGoogle Scholar
  23. 23.
    Abanades, J.C., Anthony, E.J., Lu, D.Y., Salvador, C., Alvarez, D.: Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE J. 50(7), 1614–1622 (2004). doi: 10.1002/aic.10132 CrossRefGoogle Scholar
  24. 24.
    Alonso, M., Rodriguez, N., Gonzalez, B., Grasa, G., Murillo, R., Abanades, J.C.: Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development. Int. J. Greenh. Gas Control 4(2), 167–173 (2010). doi: 10.1016/j.ijggc.2009.10.004 CrossRefGoogle Scholar
  25. 25.
    Blamey, J., Anthony, E.J., Wang, J., Fennell, P.S.: The calcium looping cycle for large-scale CO2 capture. Prog. Energ. Combust. Sci. 36(2), 260–279 (2010). doi: 10.1016/j.pecs.2009.10.001 CrossRefGoogle Scholar
  26. 26.
    Wang, W., Ramkumar, S., Li, S., Wong, D., Iyer, M., Sakadjian, B.B., Statnick, R.M., Fan, L.S.: Subpilot demonstration of the carbonation-calcination reaction (CCR) process. High-temperature CO2 and sulfur capture from coal-fired power plants. Ind. Eng. Chem. Res. 49(11), 5094–5101 (2010). doi: 10.1021/ie901509k CrossRefGoogle Scholar
  27. 27.
    Johnsen, K., Ryu, H.J., Grace, J.R., Lim, C.J.: Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chem. Eng. Sci. 61(4), 1195–1202 (2006). doi: 10.1016/j.ces.2005.08.022 CrossRefGoogle Scholar
  28. 28.
    Grasa, G.S., Abanades, J.C.: CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind. Eng. Chem. Res. 45(26), 8846–8851 (2006). doi: 10.1021/ie0606946 CrossRefGoogle Scholar
  29. 29.
    Rodriguez, N., Alonso, M., Abanades, J.C., Charitos, A., Hawthorne, C., Scheffknecht, G., Lu, D.Y., Anthony, E.J.: Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO. Energy Procedia 4, 393–401 (2011). doi: 10.1016/j.egypro.2011.01.067 CrossRefGoogle Scholar
  30. 30.
    Arias, B., Abanades, J.C., Grasa, G.S.: An analysis of the effect of carbonation conditions on CaO deactivation curves. Chem. Eng. J. 167(1), 255–261 (2011). doi: 10.1016/j.cej.2010.12.052 CrossRefGoogle Scholar
  31. 31.
    Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009). doi: 10.1002/cssc.200900036 CrossRefGoogle Scholar
  32. 32.
    Grasa, G., Gonzalez, B., Alonso, M., Abanades, J.C.: Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions. Energy Fuels 21(6), 3560–3562 (2007). doi: 10.1021/ef0701687 CrossRefGoogle Scholar
  33. 33.
    Manovic, V., Anthony, E.J.: Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environ. Sci. Technol. 42, 4170–4174 (2008) CrossRefGoogle Scholar
  34. 34.
    Valverde, J.M., Perejon, A., Perez-Maqueda, L.: Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at ca-looping conditions. Environ. Sci. Technol. 46(11), 6401–6408 (2012). doi: 10.1021/es3002426 CrossRefGoogle Scholar
  35. 35.
    Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P., Zarazua, E., Cuellar, E.L.: Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials. In: Nemecek, J., Bittnar, Z., Bartos, P.J.M., Smilauer, V., Zeman, J. (eds.) Nanotechnology in Construction 3, pp. 139–148. Springer, Berlin (2009) CrossRefGoogle Scholar
  36. 36.
    Hoguea, M.D., Buhlerb, C.R., Callea, C.I., Matsuyamac, T., Luod, W., Groopa, E.E.: Insulator-insulator contact charging and its relationship to atmospheric pressure. J. Electrost. 61, 259–268 (2004) CrossRefGoogle Scholar
  37. 37.
    Gallo, C.F., Lama, W.L.: Some charge exchange phenomena explained by a classical model of the work function. J. Electrost. 2(2), 145–150 (1976). doi: 10.1016/0304-3886(76)90005-X CrossRefGoogle Scholar
  38. 38.
    Pearse, M.J., Pope, M.I.: The separation of quartz-dolomite powders using a triboelectric technique. Powder Technol. 14(1), 7–15 (1976). doi: 10.1016/0032-5910(76)80002-2 CrossRefGoogle Scholar
  39. 39.
    Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 88 edn. CRC Press, Boca Raton (2007) Google Scholar
  40. 40.
    Liang, S.-C., Zhang, J.-P., Fan, L.-S.: Electrostatic characteristics of hydrated lime powder during transport. Ind. Eng. Chem. Res. 35, 2748–2755 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations