Skip to main content

Fluidization Assistance Techniques

  • Chapter
Fluidization of Fine Powders

Part of the book series: Particle Technology Series ((POTS,volume 18))

  • 1327 Accesses

Abstract

Cohesive aggregation in fine powders usually hinders nonbubbling fluid-like fluidization. Different techniques have been developed in the last few years to assist fluidization by helping the gas flow to mobilize and break cohesive aggregates, which serves to turn the Geldart C cohesive fluidization behavior into fluid-like fluidization. As reviewed in this chapter, the use of these techniques may have a relevant impact on novel processes based on fluidized beds with applications in newly developed technologies such as Atomic Layer Deposition in nanoparticle fluidized beds and CO2 capture by fluidized beds of Ca-based particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geldart, D.: Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973). doi:10.1016/0032-5910(73)80037-3

    Article  Google Scholar 

  2. Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The transitional behaviour of avalanches in cohesive granular materials. J. Stat. Mech. P07015, 1–26 (2006)

    Google Scholar 

  3. Lauga, C., Chaouki, J., Klvana, D., Chavarie, C.: Improvement of the fluidisability of Ni/SiO2 aerogels by reducing interparticle forces. Powder Technol. 65, 461–468 (1991)

    Article  Google Scholar 

  4. Ajbar, A., Bakhbakhi, Y., Ali, S., Asif, M.: Fluidization of nano-powders: Effect of sound vibration and pre-mixing with group a particles. Powder Technol. 206(3), 327–337 (2011). doi:10.1016/j.powtec.2010.09.038

    Article  Google Scholar 

  5. Valverde, J.M., Ramos, A., Castellanos, A., Watson, P.K.: The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity. Powder Technol. 97, 237–245 (1998)

    Article  Google Scholar 

  6. Pfeffer, C.N.R., Dave, R.N., Sundaresan, S.: Aerated vibrofluidization of silica nanoparticles. AIChE J. 50, 1776–1785 (2004)

    Article  Google Scholar 

  7. Quintanilla, M.A.S., Valverde, J.M., Castellanos, A., Lepek, D., Pfeffer, R., Dave, R.N.: Nanofluidization as affected by vibration and electrostatic fields. Chem. Eng. Sci. 63, 5559–5569 (2008)

    Article  Google Scholar 

  8. Zhu, C., Liu, G., Yu, Q., Pfeffer, R., Dave, R., Nam, C.H.: Sound assisted fluidization of nanoparticle agglomerates. Powder Technol. 141, 119–123 (2004)

    Article  Google Scholar 

  9. Quevedo, J., et al.: Fluidization of nanoagglomerates in a rotating fluidized bed. AIChE J. 52, 2401–2412 (2006)

    Article  Google Scholar 

  10. Lepek, D., Valverde, J.M., Pfeffer, R., Dave, R.N.: Enhanced nanofluidization by alternating electric fields. AIChE J. 56, 54–65 (2010)

    Google Scholar 

  11. Quintanilla, M.A.S., Valverde, J.M., Espin, M.J., Castellanos, A.: Electrofluidization of silica nanoparticle agglomerates. Ind. Eng. Chem. Res. 51, 531–538 (2012)

    Article  Google Scholar 

  12. Yu, Q., et al.: Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE J. 51, 1971–1979 (2005)

    Article  Google Scholar 

  13. van Ommen, J.R., Yurteri, C.U., Ellis, N., Kelder, E.M.: Scalable gas-phase processes to create nanostructured particles. Particuology 8, 572–577 (2010)

    Article  Google Scholar 

  14. Quevedo, J.A., Omosebi, A., Pfeffer, R.: Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets. AIChE J. 56(6), 1456–1468 (2010)

    Google Scholar 

  15. van Ommen, J.R., Valverde, J.M., Pfeffer, R.: Fluidization of nanopowders: A review. J. Nanopart Res. 14, 737 (2012). doi:10.1007/s11051-012-0737-4

    Article  Google Scholar 

  16. Beetstra, R., Lafont, U., Nijenhuis, J., Kelder, E.M., van Ommen, J.R.: Atmospheric pressure process for coating particles using atomic layer deposition. Chem. Vap. Depos. 15, 227–233 (2009)

    Article  Google Scholar 

  17. Martinez, I., Murillo, R., Grasa, G., Rodriguez, N., Abanades, J.C.: Conceptual design of a three fluidised beds combustion system capturing CO2 with CaO. Int. J. Greenh. Gas Control 5(3), 498–504 (2011). doi:10.1016/j.ijggc.2010.04.017

    Article  Google Scholar 

  18. Hakim, L.F., et al.: Aggregation behavior of nanoparticles in fluidized beds. Powder Technol. 160, 149–160 (2005)

    Article  Google Scholar 

  19. Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The transitional behavior of avalanches in cohesive granular materials. J. Stat. Mech. Theory Exp. 7, 07015 (2006)

    Article  Google Scholar 

  20. Yang, W.C.: Fluidization of fine cohesive powders and nanoparticles—A review. J. Chin. Inst. Chem. Eng. 36, 1–15 (2005)

    ADS  Google Scholar 

  21. Valverde, J.M., Pontiga, F., Soria-Hoyo, C., Quintanilla, M.A.S., Moreno, H., Duran, F.J., Espin, M.J.: Improving the gas solids contact efficiency in a fluidized bed of CO2 adsorbent fine particles. Phys. Chem. Chem. Phys. 13, 14906–14909 (2011). doi:10.1039/c1cp21939a

    Article  Google Scholar 

  22. Valverde, J.M., Duran, F.J., Pontiga, F., Moreno, H.: CO2 capture enhancement in a fluidized bed of a modified Geldart C powder. Powder Technol. 224, 247–252 (2012). doi:10.1016/j.powtec.2012.02.060

    Article  Google Scholar 

  23. Abanades, J.C., Anthony, E.J., Lu, D.Y., Salvador, C., Alvarez, D.: Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE J. 50(7), 1614–1622 (2004). doi:10.1002/aic.10132

    Article  Google Scholar 

  24. Alonso, M., Rodriguez, N., Gonzalez, B., Grasa, G., Murillo, R., Abanades, J.C.: Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development. Int. J. Greenh. Gas Control 4(2), 167–173 (2010). doi:10.1016/j.ijggc.2009.10.004

    Article  Google Scholar 

  25. Blamey, J., Anthony, E.J., Wang, J., Fennell, P.S.: The calcium looping cycle for large-scale CO2 capture. Prog. Energ. Combust. Sci. 36(2), 260–279 (2010). doi:10.1016/j.pecs.2009.10.001

    Article  Google Scholar 

  26. Wang, W., Ramkumar, S., Li, S., Wong, D., Iyer, M., Sakadjian, B.B., Statnick, R.M., Fan, L.S.: Subpilot demonstration of the carbonation-calcination reaction (CCR) process. High-temperature CO2 and sulfur capture from coal-fired power plants. Ind. Eng. Chem. Res. 49(11), 5094–5101 (2010). doi:10.1021/ie901509k

    Article  Google Scholar 

  27. Johnsen, K., Ryu, H.J., Grace, J.R., Lim, C.J.: Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chem. Eng. Sci. 61(4), 1195–1202 (2006). doi:10.1016/j.ces.2005.08.022

    Article  Google Scholar 

  28. Grasa, G.S., Abanades, J.C.: CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind. Eng. Chem. Res. 45(26), 8846–8851 (2006). doi:10.1021/ie0606946

    Article  Google Scholar 

  29. Rodriguez, N., Alonso, M., Abanades, J.C., Charitos, A., Hawthorne, C., Scheffknecht, G., Lu, D.Y., Anthony, E.J.: Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO. Energy Procedia 4, 393–401 (2011). doi:10.1016/j.egypro.2011.01.067

    Article  Google Scholar 

  30. Arias, B., Abanades, J.C., Grasa, G.S.: An analysis of the effect of carbonation conditions on CaO deactivation curves. Chem. Eng. J. 167(1), 255–261 (2011). doi:10.1016/j.cej.2010.12.052

    Article  Google Scholar 

  31. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009). doi:10.1002/cssc.200900036

    Article  Google Scholar 

  32. Grasa, G., Gonzalez, B., Alonso, M., Abanades, J.C.: Comparison of CaO-based synthetic CO2 sorbents under realistic calcination conditions. Energy Fuels 21(6), 3560–3562 (2007). doi:10.1021/ef0701687

    Article  Google Scholar 

  33. Manovic, V., Anthony, E.J.: Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environ. Sci. Technol. 42, 4170–4174 (2008)

    Article  Google Scholar 

  34. Valverde, J.M., Perejon, A., Perez-Maqueda, L.: Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at ca-looping conditions. Environ. Sci. Technol. 46(11), 6401–6408 (2012). doi:10.1021/es3002426

    Article  Google Scholar 

  35. Sobolev, K., Flores, I., Torres-Martinez, L.M., Valdez, P., Zarazua, E., Cuellar, E.L.: Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials. In: Nemecek, J., Bittnar, Z., Bartos, P.J.M., Smilauer, V., Zeman, J. (eds.) Nanotechnology in Construction 3, pp. 139–148. Springer, Berlin (2009)

    Chapter  Google Scholar 

  36. Hoguea, M.D., Buhlerb, C.R., Callea, C.I., Matsuyamac, T., Luod, W., Groopa, E.E.: Insulator-insulator contact charging and its relationship to atmospheric pressure. J. Electrost. 61, 259–268 (2004)

    Article  Google Scholar 

  37. Gallo, C.F., Lama, W.L.: Some charge exchange phenomena explained by a classical model of the work function. J. Electrost. 2(2), 145–150 (1976). doi:10.1016/0304-3886(76)90005-X

    Article  Google Scholar 

  38. Pearse, M.J., Pope, M.I.: The separation of quartz-dolomite powders using a triboelectric technique. Powder Technol. 14(1), 7–15 (1976). doi:10.1016/0032-5910(76)80002-2

    Article  Google Scholar 

  39. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 88 edn. CRC Press, Boca Raton (2007)

    Google Scholar 

  40. Liang, S.-C., Zhang, J.-P., Fan, L.-S.: Electrostatic characteristics of hydrated lime powder during transport. Ind. Eng. Chem. Res. 35, 2748–2755 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valverde Millán, J.M. (2013). Fluidization Assistance Techniques. In: Fluidization of Fine Powders. Particle Technology Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5587-1_13

Download citation

Publish with us

Policies and ethics