The Use of Additives to Control Powder Flow. Mechanical Properties of Fine Powder Beds

Part of the Particle Technology Series book series (POTS, volume 18)


An efficient method to assist fluidization of fine cohesive powders is the addition of surface additives such as silica nanoparticles, which serves to decrease the interparticle adhesive force thus reducing the strength of cohesive aggregates, which in this way can be broken by the gas flow. This allows dynamical aggregation of the particles in fluidization, which may lead to a fluid-like nonbubbling regime. In this chapter, the physical mechanism by which interparticle adhesive forces are reduced by means of surface additives will be analyzed. An experimental technique to measure the tensile strength and bulk density of conditioned fine powders, in a range of low consolidations, will be described. As illustrated by experimental observations reviewed in this chapter, the strength of cohesive aggregates is enhanced by previous compaction of the powder, which gives rise to a Geldart C fluidization behavior.


Silica Nanoparticles Particle Volume Fraction Distinct Element Method Interparticle Force Interparticle Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Steeneken, P.A.M., Woortman, A.J.J., Gerritsen, A.H., Poort, H.: The influence of flow conditioners on some mechanical properties of potato starch powder. Powder Technol. 47(3), 239–246 (1986). doi: 10.1016/0032-5910(86)80085-7 CrossRefGoogle Scholar
  2. 2.
    Valverde, J.M., Ramos, A., Castellanos, A., Watson, P.K.: The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity. Powder Technol. 97, 237–245 (1998) CrossRefGoogle Scholar
  3. 3.
    Yang, J., Sliva, A., Banerjee, A., Dave, R.N., Pfeffer, R.: Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 158(1–3), 21–33 (2005). doi: 10.1016/j.powtec.2005.04.032 CrossRefGoogle Scholar
  4. 4.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: Adhesion force between fine particles with controlled surface properties. AIChE J. 52, 1715–1728 (2006) CrossRefGoogle Scholar
  5. 5.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Fine cohesive powders in rotating drums: Transition from rigid-plastic flow to gas-fluidized regime. Phys. Rev. E 65, 061301 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London Ser. A 324(1558), 301–318 (1971) ADSCrossRefGoogle Scholar
  8. 8.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975) CrossRefGoogle Scholar
  9. 9.
    Barthel, E.: On the description of the adhesive contact of spheres with arbitrary interaction potentials. J. Colloid Interface Sci. 200(1), 7–18 (1998) CrossRefGoogle Scholar
  10. 10.
    Maugis, D.: Adhesion of spheres: The JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150–151(1), 243–269 (1992) CrossRefGoogle Scholar
  11. 11.
    Greenwood, J.A., Johnson, K.L.: An alternative to the Maugis model of adhesion between elastic spheres. J. Phys. D 31(22), 3279–3290 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    Loc, V.-Q., Zhang, X., Lesburg, L.: Normal and tangential force+displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids Struct. 38, 6455–6489 (2001) zbMATHCrossRefGoogle Scholar
  13. 13.
    Fichman, M., Pnueli, D.: Sufficient conditions for small particles to hold together because of adhesion forces. Trans. ASME: J. Appl. Mech. 52(1), 105–108 (1985) ADSCrossRefGoogle Scholar
  14. 14.
    Maugis, D., Pollock, H.M.: Surface forces, deformation and adherence at metal microcontacts. Acta Metall. 32, 1323–1334 (1984) CrossRefGoogle Scholar
  15. 15.
    Mesarovic, S.D., Johnson, K.L.: Adhesive contact of elastic-plastic spheres. J. Mech. Phys. Solids 48, 2009–2033 (2000) ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Mesarovic, S.D., Fleck, N.A.: Frictionless indentation of dissimilar elastic-plastic spheres. Int. J. Solids Struct. 37(46–47), 7071–7091 (2000) zbMATHCrossRefGoogle Scholar
  17. 17.
    Wu, C.-Y.: Ph. D. Thesis. University of Aston, Birmingham (2001) Google Scholar
  18. 18.
    Johnson, K.L.: Adhesion at the contact of solids. In: Koiter, W.T. (ed.) Theoretical and Applied Mechanics, Proc. 14th IUTAM Congress, pp. 133–143. North-Holland, Amsterdam (1976). Google Scholar
  19. 19.
    Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657–662 (2002) ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Quintanilla, M.A.S., Castellanos, A., Valverde, J.M.: Interparticle contact forces in fine cohesive powders. Theory and experiments. Proc. Appl. Math. Mech. 3(1), 206–207 (2003) CrossRefGoogle Scholar
  21. 21.
    Ott, M.L., Mizes, H.A.: Atomic force microscopy adhesion measurements of surface-modified toners for xerographic applications. Colloids Surf. A 87(3), 245–256 (1994) CrossRefGoogle Scholar
  22. 22.
    Applications notes. Technical report Google Scholar
  23. 23.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A., Viturro, R.E.: Looking for self-organized critical behavior in avalanches of slightly cohesive powders. Phys. Rev. Lett. 87, 194301 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    Quintanilla, M.A.S., Castellanos, A., Valverde, J.M.: Correlation between bulk stresses and interparticle contact forces in fine powders. Phys. Rev. E 64, 031301 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    Valverde, J.M., Castellanos, A., Ramos, A., Perez, A.T., Watson, M.A.M.P.K.: An automated apparatus for measuring the tensile strength and compressibility of fine cohesive powders. Rev. Sci. Instrum. 71, 2791–2795 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: The memory of granular materials. Contemp. Phys. 44, 389–399 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Jamming threshold of dry fine powders. Phys. Rev. Lett. 92, 258303 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150 (1937) Google Scholar
  29. 29.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: The noisy behaviour of avalanches in cohesive powders. Int. Rev. Chem. Eng. 1, 557–562 (2009) Google Scholar
  30. 30.
    Watson, P.K., Valverde, J.M., Castellanos, A.: The tensile strength and free volume of cohesive powders compressed by gas flow. Powder Technol. 115(1), 45–50 (2001) CrossRefGoogle Scholar
  31. 31.
    Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Geotechnique 8, 22–53 (1958) CrossRefGoogle Scholar
  32. 32.
    Rumpf, H.: Basic principles and methods of granulation: I, II. Chem. Ing. Tech. 30, 138–144 (1958) CrossRefGoogle Scholar
  33. 33.
    Emeriault, F., Chang, C.S.: Interparticle forces and displacements in granular materials. Comput. Geotech. 20(3–4), 223–244 (1997) CrossRefGoogle Scholar
  34. 34.
    Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998) ADSCrossRefGoogle Scholar
  35. 35.
    Storakers, B., Fleck, N.A., McMeeking, R.M.: The viscoplastic compaction of composite powders. J. Mech. Phys. Solids 47(4), 785–815 (1999) ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Martin, C.L.: Elasticity, fracture and yielding of cold compacted metal powders. J. Mech. Phys. Solids 52(8), 1691–1717 (2004) ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Poquillon, D., Lemaitre, J., Baco-Carles, V., Tailhades, P., Lacaze, J.: Cold compaction of iron powders-relations between powder morphology and mechanical properties: Part I: Powder preparation and compaction. Powder Technol. 126(1), 65–74 (2002) CrossRefGoogle Scholar
  38. 38.
    Suzuki, M., Makino, K., Yamada, M., Iinoya, K.: Study on the coordination number in a system of randomly packed, uniform-sized spherical particles. Int. Chem. Eng. 21, 482–488 (1981) Google Scholar
  39. 39.
    Nakagaki, M., Sunada, H.: Theoretical studies on structures of the sedimentation bed of spherical particles. Yakugaku Zashi 88, 651–655 (1968) Google Scholar
  40. 40.
    Jaraiz, E., Kimura, S., Levenspiel, O.: Vibrating beds of fine particles: Estimation of interparticle forces from expansion and pressure drop experiments. Powder Technol. 72(1), 23–30 (1992) CrossRefGoogle Scholar
  41. 41.
    Watson, P.K., Mizes, H., Castellanos, A., Perez, A.T.: The packing of fine, cohesive powders. In: Powders & Grains 97, pp. 135–138. Balkema, Rotterdam (1997) Google Scholar
  42. 42.
    Yang, R.Y., Zou, R.P., Yu, A.B.: Computer simulation of the packing of fine particles. Phys. Rev. E 62(3 B), 3900–3908 (2000) ADSCrossRefGoogle Scholar
  43. 43.
    Ahuja, S.K.: Private communication. Technical report Google Scholar
  44. 44.
    Trappe, V., et al.: Jamming phase diagram for attractive particles. Nature 411(6839), 772–775 (2001) ADSCrossRefGoogle Scholar
  45. 45.
    Durian, D.J.: Foam mechanics at the bubble scale. Phys. Rev. Lett. 75(26), 4780–4783 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    Lacasse, M.D., et al.: Model for the elasticity of compressed emulsions. Phys. Rev. Lett. 76(18), 3448–3451 (1996) ADSCrossRefGoogle Scholar
  47. 47.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Physics of compaction of fine powders. Phys. Rev. Lett. 94, 075501 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys. Rev. E 64, 041304 (2001) ADSCrossRefGoogle Scholar
  49. 49.
    Valverde, J.M., Castellanos, A.: Compaction of fine powders: From fluidized agglomerates to primary particles. Granul. Matter 9, 19–24 (2007) CrossRefGoogle Scholar
  50. 50.
    Evesque, P.: A micro-mechanical modelling of the pressure dependence of the void index of a granular assembly. Poudres & Grains 10, 6–16 (1999) Google Scholar
  51. 51.
    Valverde, J.M., Castellanos, A.: High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow. Phys. Rev. E 74, 021302 (2006) ADSCrossRefGoogle Scholar
  52. 52.
    Tatek, Y., et al.: Structure and cohesion of weakly agglomerated fractal systems. Powder Technol. 143–144, 117–129 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations