Fluidlike Fluidization as Affected by External Fields

Part of the Particle Technology Series book series (POTS, volume 18)


Fluidlike fluidization of fine powders is directly related to the formation of dynamic aggregates. This aggregation process may be influenced by external fields. In the case of oscillating fields, such as in an alternating electric field if particles are electrostatically charged or in oscillatory vibration, the aggregates are forced to oscillate, which affects their hydrodynamic interaction with the surrounding fluid. This chapter is devoted to a review of empirical observations and modeling on the effect of these fields on fluidization of fine powders. Additionally, external excitation may help in the case of Geldart C powders to overcome cohesive aggregation and turn the heterogeneous fluidization behavior into a fluid-like behavior.


Settling Velocity Particle Volume Fraction Splash Zone Effective Acceleration Charge Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Glor, M.: Electrostatic Hazards in Powder Handling. John Wiley & Sons, New York (1988). pp. 425–440 Google Scholar
  2. 2.
    Matsukaka, S., Maruyama, H., Matsuyama, T., Ghadiri, M.: Triboelectric charging of powders: A review. Chem. Eng. Sci. 65, 5781–5807 (2010) CrossRefGoogle Scholar
  3. 3.
    Johnson, T.W., Melcher, J.R.: Electromechanics of electrofluidized beds. Ind. Eng. Chem. Fundam. 14, 146–153 (1975) CrossRefGoogle Scholar
  4. 4.
    Ghadiri, M., Martin, C.M., Morgan, J.E.P., Clift, R.: An electromechanical valve for solids. Powder Technol. 73, 21–35 (1992) CrossRefGoogle Scholar
  5. 5.
    Tardos, G., Pfeffer, R., Peters, M., Sweeney, T.: Filtration of airborne dust in a triboelectrically charged fluidized bed. Ind. Eng. Chem. Fundam. 22, 445–453 (1983) CrossRefGoogle Scholar
  6. 6.
    Elsdon, R., Shearer, C.J.: Heat transfer in a gas fluidized bed assisted by an alternating electric field. Chem. Eng. Sci. 32, 1147–1153 (1977) CrossRefGoogle Scholar
  7. 7.
    Quintanilla, M.A.S., Valverde, J.M., Espin, M.J., Castellanos, A.: Electrofluidization of silica nanoparticle agglomerates. Ind. Eng. Chem. Res. 51, 531–538 (2012) CrossRefGoogle Scholar
  8. 8.
    Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Electromechanics of fluidized beds of nanoparticles. Phys. Rev. E 79, 011304 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    Lepek, D., Valverde, J.M., Pfeffer, R., Dave, R.N.: Enhanced nanofluidization by alternating electric fields. AIChE J. 56, 54–65 (2010) Google Scholar
  10. 10.
    Valverde, J.M., Quintanilla, M.A.S., Espin, M.J., Castellanos, A.: Nanofluidization electrostatics. Phys. Rev. E 77, 031301 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Kashyap, M., Gidaspow, D., Driscoll, M.: Effect of electric field on the hydrodynamics of fluidized nanoparticles. Powder Technol. 183, 441–453 (2008) CrossRefGoogle Scholar
  12. 12.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: Adhesion force between fine particles with controlled surface properties. AIChE J. 52, 1715–1728 (2006) CrossRefGoogle Scholar
  13. 13.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics. Pergamon Press, New York (1995) Google Scholar
  14. 14.
    Yao, W., Guangsheng, G., Fei, W., Wu, J.: Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol. 124, 152–159 (2002) CrossRefGoogle Scholar
  15. 15.
    Valverde, J.M., Castellanos, A.: Fluidization, bubbling and jamming of nanoparticle agglomerates. Chem. Eng. Sci. 62(23), 6947–6956 (2007). doi: 10.1016/j.ces.2007.08.050 CrossRefGoogle Scholar
  16. 16.
    Wang, W., Ramkumar, S., Li, S., Wong, D., Iyer, M., Sakadjian, B.B., Statnick, R.M., Fan, L.S.: Subpilot demonstration of the carbonation-calcination reaction (CCR) process. High-temperature CO2 and sulfur capture from coal-fired power plants. Ind. Eng. Chem. Res. 49(11), 5094–5101 (2010). doi: 10.1021/ie901509k CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Chao, Z., Jakobsen, H.A.: 3D simulation of bubbling fluidized bed reactors for sorption enhanced steam methane reforming processes. J. Natural Gas Sci. Eng. 2, 105–113 (2010) CrossRefGoogle Scholar
  18. 18.
    Segrè, P.N., et al.: Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett. 86(26 I), 6042–6045 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    Kantor, Y., Webman, I.: Elastic properties of random percolating systems. Phys. Rev. Lett. 52, 1891–1894 (1984) ADSCrossRefGoogle Scholar
  20. 20.
    Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Physics of compaction of fine powders. Phys. Rev. Lett. 94, 075501 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    Valverde, J.M., Espin, M.J., Quintanilla, M.A.S., Castellanos, A.: Electrofluidized bed of silica nanoparticles. J. Electrost. 67, 439–444 (2009) CrossRefGoogle Scholar
  22. 22.
    Yoshida, H., Nurtono, T., Fukui, K.: A new method for the control of dilute suspension sedimentation by horizontal movement. Powder Technol. 150, 9–19 (2005) CrossRefGoogle Scholar
  23. 23.
    Valverde, J.M., Quintanilla, M.A.S., Castellanos, A., Mills, P.: Experimental study on the dynamics of gas-fluidized beds. Phys. Rev. E 67, 016303 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Effect of vibration on the stability of a gas-fluidized bed of fine powder. Phys. Rev. E 64, 021302 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    Valverde, J.M., Castellanos, A.: Effect of vibration on agglomerate particulate fluidization. AIChE J. 52, 1705–1714 (2006) CrossRefGoogle Scholar
  26. 26.
    Quintanilla, M.A.S., Valverde, J.M., Castellanos, A., Lepek, D., Pfeffer, R., Dave, R.N.: Nanofluidization as affected by vibration and electrostatic fields. Chem. Eng. Sci. 63, 5559–5569 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevillaSevillaSpain

Personalised recommendations