Skip to main content

Fluidlike Fluidization as Affected by External Fields

  • Chapter
Fluidization of Fine Powders

Part of the book series: Particle Technology Series ((POTS,volume 18))

  • 1268 Accesses

Abstract

Fluidlike fluidization of fine powders is directly related to the formation of dynamic aggregates. This aggregation process may be influenced by external fields. In the case of oscillating fields, such as in an alternating electric field if particles are electrostatically charged or in oscillatory vibration, the aggregates are forced to oscillate, which affects their hydrodynamic interaction with the surrounding fluid. This chapter is devoted to a review of empirical observations and modeling on the effect of these fields on fluidization of fine powders. Additionally, external excitation may help in the case of Geldart C powders to overcome cohesive aggregation and turn the heterogeneous fluidization behavior into a fluid-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glor, M.: Electrostatic Hazards in Powder Handling. John Wiley & Sons, New York (1988). pp. 425–440

    Google Scholar 

  2. Matsukaka, S., Maruyama, H., Matsuyama, T., Ghadiri, M.: Triboelectric charging of powders: A review. Chem. Eng. Sci. 65, 5781–5807 (2010)

    Article  Google Scholar 

  3. Johnson, T.W., Melcher, J.R.: Electromechanics of electrofluidized beds. Ind. Eng. Chem. Fundam. 14, 146–153 (1975)

    Article  Google Scholar 

  4. Ghadiri, M., Martin, C.M., Morgan, J.E.P., Clift, R.: An electromechanical valve for solids. Powder Technol. 73, 21–35 (1992)

    Article  Google Scholar 

  5. Tardos, G., Pfeffer, R., Peters, M., Sweeney, T.: Filtration of airborne dust in a triboelectrically charged fluidized bed. Ind. Eng. Chem. Fundam. 22, 445–453 (1983)

    Article  Google Scholar 

  6. Elsdon, R., Shearer, C.J.: Heat transfer in a gas fluidized bed assisted by an alternating electric field. Chem. Eng. Sci. 32, 1147–1153 (1977)

    Article  Google Scholar 

  7. Quintanilla, M.A.S., Valverde, J.M., Espin, M.J., Castellanos, A.: Electrofluidization of silica nanoparticle agglomerates. Ind. Eng. Chem. Res. 51, 531–538 (2012)

    Article  Google Scholar 

  8. Espin, M.J., Valverde, J.M., Quintanilla, M.A.S., Castellanos, A.: Electromechanics of fluidized beds of nanoparticles. Phys. Rev. E 79, 011304 (2009)

    Article  ADS  Google Scholar 

  9. Lepek, D., Valverde, J.M., Pfeffer, R., Dave, R.N.: Enhanced nanofluidization by alternating electric fields. AIChE J. 56, 54–65 (2010)

    Google Scholar 

  10. Valverde, J.M., Quintanilla, M.A.S., Espin, M.J., Castellanos, A.: Nanofluidization electrostatics. Phys. Rev. E 77, 031301 (2008)

    Article  ADS  Google Scholar 

  11. Kashyap, M., Gidaspow, D., Driscoll, M.: Effect of electric field on the hydrodynamics of fluidized nanoparticles. Powder Technol. 183, 441–453 (2008)

    Article  Google Scholar 

  12. Quintanilla, M.A.S., Valverde, J.M., Castellanos, A.: Adhesion force between fine particles with controlled surface properties. AIChE J. 52, 1715–1728 (2006)

    Article  Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics. Pergamon Press, New York (1995)

    Google Scholar 

  14. Yao, W., Guangsheng, G., Fei, W., Wu, J.: Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol. 124, 152–159 (2002)

    Article  Google Scholar 

  15. Valverde, J.M., Castellanos, A.: Fluidization, bubbling and jamming of nanoparticle agglomerates. Chem. Eng. Sci. 62(23), 6947–6956 (2007). doi:10.1016/j.ces.2007.08.050

    Article  Google Scholar 

  16. Wang, W., Ramkumar, S., Li, S., Wong, D., Iyer, M., Sakadjian, B.B., Statnick, R.M., Fan, L.S.: Subpilot demonstration of the carbonation-calcination reaction (CCR) process. High-temperature CO2 and sulfur capture from coal-fired power plants. Ind. Eng. Chem. Res. 49(11), 5094–5101 (2010). doi:10.1021/ie901509k

    Article  Google Scholar 

  17. Wang, Y., Chao, Z., Jakobsen, H.A.: 3D simulation of bubbling fluidized bed reactors for sorption enhanced steam methane reforming processes. J. Natural Gas Sci. Eng. 2, 105–113 (2010)

    Article  Google Scholar 

  18. Segrè, P.N., et al.: Glasslike kinetic arrest at the colloidal-gelation transition. Phys. Rev. Lett. 86(26 I), 6042–6045 (2001)

    Article  ADS  Google Scholar 

  19. Kantor, Y., Webman, I.: Elastic properties of random percolating systems. Phys. Rev. Lett. 52, 1891–1894 (1984)

    Article  ADS  Google Scholar 

  20. Castellanos, A., Valverde, J.M., Quintanilla, M.A.S.: Physics of compaction of fine powders. Phys. Rev. Lett. 94, 075501 (2005)

    Article  ADS  Google Scholar 

  21. Valverde, J.M., Espin, M.J., Quintanilla, M.A.S., Castellanos, A.: Electrofluidized bed of silica nanoparticles. J. Electrost. 67, 439–444 (2009)

    Article  Google Scholar 

  22. Yoshida, H., Nurtono, T., Fukui, K.: A new method for the control of dilute suspension sedimentation by horizontal movement. Powder Technol. 150, 9–19 (2005)

    Article  Google Scholar 

  23. Valverde, J.M., Quintanilla, M.A.S., Castellanos, A., Mills, P.: Experimental study on the dynamics of gas-fluidized beds. Phys. Rev. E 67, 016303 (2003)

    Article  ADS  Google Scholar 

  24. Valverde, J.M., Castellanos, A., Quintanilla, M.A.S.: Effect of vibration on the stability of a gas-fluidized bed of fine powder. Phys. Rev. E 64, 021302 (2001)

    Article  ADS  Google Scholar 

  25. Valverde, J.M., Castellanos, A.: Effect of vibration on agglomerate particulate fluidization. AIChE J. 52, 1705–1714 (2006)

    Article  Google Scholar 

  26. Quintanilla, M.A.S., Valverde, J.M., Castellanos, A., Lepek, D., Pfeffer, R., Dave, R.N.: Nanofluidization as affected by vibration and electrostatic fields. Chem. Eng. Sci. 63, 5559–5569 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valverde Millán, J.M. (2013). Fluidlike Fluidization as Affected by External Fields. In: Fluidization of Fine Powders. Particle Technology Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5587-1_11

Download citation

Publish with us

Policies and ethics