Skip to main content

Inorganic Materials

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

The separation of compounds by inorganic/organic boundary is of less importance for the structure determination by diffraction methods. More important for the diffraction is how the atoms build up larger building units and the crystal itself. A molecular/non-molecular boundary is therefore relevant for the choice of a structure determination method. Non-molecular compounds – also called extended solids – are constructed by bonds that extend “infinitely” in three dimensions through a crystal. These non-molecular crystals usually crystallize with higher symmetries, and atoms often occupy special Wyckoff positions. A review of actual methodology is given first, and then highlights and pitfalls of structure determination from powder diffraction, its problems and their solutions are shown and discussed using selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  2. Deem MW, Newsam JM (1989) Determination of 4-connected framework crystal structures by simulated annealing. Nature 342:260–262

    Article  ADS  Google Scholar 

  3. Favre-Nicolin V, Černý R (2002) FOX, “Free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction. J Appl Crystallogr 35:734–743

    Article  Google Scholar 

  4. Favre-Nicolin V, Černý R (2004) A better FOX: using flexible modeling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z Kristallogr 219:847–856

    Article  Google Scholar 

  5. Edgar M, Carter VJ, Tunstall DP, Grewal P, Favre-Nicolin V, Cox PA, Lightfoot P, Wright PA (2002) Al2(CH3PO3)3: Structure solution of a novel aluminium methylphosphonate using a new simulated annealing program and powder X-ray diffraction data. Chem Commun 8:808–809

    Article  Google Scholar 

  6. Černý R, Filinchuk Y, Hagemann H, Yvon K (2007) Magnesium borohydride: synthesis and crystal structure. Angew Chem Int Ed 46:5765–5767

    Article  Google Scholar 

  7. Her J-H, Stephens PW, Gao Y, Soloveichik GL, Rijssenbeek J, Andrus M, Zhao J-C (2007) Structure of unsolvated magnesium borohydride Mg(BH4)2. Acta Crystallogr B63:561–568

    Google Scholar 

  8. Černý R, Favre-Nicolin V (2007) Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives. Z Kristallogr 222:105–113

    Article  Google Scholar 

  9. Altomare A, Caliandro R, Camalli M, Cuocci C, Giacovazzo C, Moliternia AGG, Rizzi R (2004) Automatic structure determination from powder data with EXPO2004. J Appl Crystallogr 37:1025–1028

    Article  Google Scholar 

  10. Ravnsbæk D, Filinchuk Y, Cerenius Y, Jakobsen HJ, Besenbacher F, Skibsted J, Jensen TRM (2009) A series of mixed-metal borohydrides. Angew Chem Int Ed 48:6659–6663

    Article  Google Scholar 

  11. Černý R, Kim KC, Penin N, D’Anna V, Hagemann H, Sholl DS (2010) AZn2(BH4)5 (A = Li, Na) and NaZn(BH4)3: structural studies. J Phys Chem C 114:19127–19133

    Article  Google Scholar 

  12. Filinchuk Y, Chernyshov D, Nevidomskyy A, Dmitriev V (2008) High-pressure polymorphism as a step towards destabilization of LiBH4. Angew Chem Int Ed 47:529–532

    Article  Google Scholar 

  13. Dai B, Sholl DS, Johnson JKJ (2008) First-principles study of experimental and hypothetical Mg(BH4)2 crystal structures. Phys Chem C 112:4391–4395

    Article  Google Scholar 

  14. Filinchuk Y, Černý R, Hagemann H (2009) Insight into Mg(BH4)2 with synchrotron X-ray diffraction: structure revision, crystal chemistry, and anomalous thermal expansion. Chem Mater 21:925–933

    Article  Google Scholar 

  15. Lindemann I, Ferrer RD, Dunsch L, Filinchuk Y, Cerný R, Hagemann H, D’Anna V, Lawson Daku LM, Latevi M, Schultz L, Gutfleisch O (2010) Al3Li4(BH4)13: a complex double-cation borohydride with a new structure. Chem Eur J 16:8707–8712

    Article  Google Scholar 

  16. Djerdj I, Cao M, Rocquefelte X, Černý R, Jagličič Z, Arcon D, Potocnik A, Gozzo F, Niederberger M (2009) Structural characterization of a nanocrystalline inorganic–organic hybrid with fiberlike morphology and one-dimensional antiferromagnetic properties. Chem Mater 21:3356–3369

    Article  Google Scholar 

  17. Evans IR, Howard JAK, Evans JSO (2003) α-Bi2Sn2O7 – a 176 atom crystal structure from powder diffraction data. J Mater Chem 13:2098–2103

    Article  Google Scholar 

  18. Stinton GW, Evans JSO (2007) Parametric Rietveld refinement. J Appl Crystallogr 40:87–95

    Article  Google Scholar 

  19. Müller M, Dinnebier RE, Ali Naveed Z, Campbell BJ, Jansen M (2010) Direct access to the order parameter: parameterized symmetry modes and rigid body movements as a function of temperature. Mater Sci Forum 651:79–95

    Article  Google Scholar 

  20. Černý R, Ravnsbæk DB, Severa G, Filinchuk Y, D’Anna V, Hagemann H, Haase D, Jensen CM, Jensen TR (2010) Structure and characterization of KSc(BH4)4. J Phys Chem C 114:19540–19549

    Article  Google Scholar 

  21. Černý R, Bonhomme F, Yvon K, Fischer P, Zolliker P, Cox DE, Hewat A (1992) Hexamagnesium dicobalt undecadeuteride Mg6Co2D11: containing CoD4 and CoD5 complex anions conforming to the 18-electron rule. J Alloy Compd 187:233–241

    Article  Google Scholar 

  22. Ravnsbæk DB, Filinchuk Y, Černý R, Ley MB, Haase D, Jakobsen HJ, Skibsted J, Jensen TR (2010) Thermal polymorphism and decomposition of Y(BH4)3. Inorg Chem 49:3801–3809

    Article  Google Scholar 

  23. Frommen C, Aliouane N, Daledda S, Fonneløp JE, Grove H, Lieutenant K, Llamas-Jansa I, Sartori S, Sørby MH, Hauback BCJ (2010) Crystal structure, polymorphism, and thermal properties of yttrium borohydride Y(BH4)3. Alloy Compd 496:710–716

    Article  Google Scholar 

  24. Joubert J-M, Černý R, Latroche M, Percheron-Guégan A, Yvon K (1998) Site occupancies in the battery electrode material LaNi3.55Mn0.4Al0.3Co0.75 as determined by multiwavelength synchrotron powder diffraction. J Appl Crystallogr 31:327–332

    Article  Google Scholar 

  25. Egami T, Billinge SJL (2003) Underneath the Bragg-peaks: structural analysis of complex materials. Pergamon Press, Oxford

    Google Scholar 

  26. Ropka J, Cerný R, Paul-Boncour VJ (2011) Local deuterium order in apparently disordered Laves phase deuteride YFe2D4.2. J Solid State Chem 184(9):2516–2524

    Article  ADS  Google Scholar 

  27. Černý R, Renaudin G, Favre-Nicolin V, Hlukhyy V, Pöttgen R (2004) Mg1 + xIr1–x (x = 0, 0.037 and 0.054), a binary intermetallic compound with a new orthorhombic structure type determined from powder and single-crystal X-ray diffraction. Acta Crystallogr B 60:272–281

    Article  Google Scholar 

  28. Filinchuk YE, Yvon K, Meisner GP, Pinkerton FE, Balogh MP (2006) On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10. Inorg Chem 45:1433–1435

    Article  Google Scholar 

  29. Filinchuk YE, Chernyshov D, Černý R (2008) The lightest borohydride probed by synchrotron diffraction: experiment calls for a new theoretical revision. J Phys Chem C 112:10579–10584

    Article  Google Scholar 

Download references

Acknowledgments

The author wants to thank to all users of Fox, and especially to them who have kindly provided the details of their work when solving the crystal structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Černý .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Černý, R. (2012). Inorganic Materials. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_4

Download citation

Publish with us

Policies and ethics