Skip to main content

Detection of Magnetic Circular Dichroism Using TEM and EELS

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

Magnetic Circular Dichroism (MCD) is a phenomenon that occurs in magnetic materials whereby the intensity of transitions from core states to available states above the Fermi energy depends on the circular polarization of the exciting radiation. This is due to the fact that spin-orbit coupling breaks the degeneracy of core states with different total angular momentum (J) and the magnetic field gives rise to difference in spin-up/spin-down density of available states. Traditionally, those transitions are excited with X-rays (XMCD). We present here a new technique by which a virtual circularly polarized photon is absorbed in Electron Energy-Loss Spectroscopy (EELS), giving rise to EELS-MCD (EMCD). The basis of this work is the equivalence between photon polarization (ε) and electron momentum transfer (h q) in the determination of the scattering cross section. The equivalent of circular polarization in EELS is achieved through special scattering conditions as interference between Bloch waves in a crystal. Angular resolved EELS is then used to measure spectra under different polarization conditions, from which information about the magnetic properties can be extracted, in particular the ratio of spin to orbital contribution to the magnetization. Measurements can be performed by simply recording spectra at two particular symmetric points in reciprocal space or by acquiring the whole diffraction pattern trough a series of energy filtered images. Spatial dichroic maps can be obtained too either in EELS STEM or by EFTEM. The advantage with respect to XMCD lies in the higher spatial resolution (2 nm). However, since the magnetic information is intrinsically entangled with dynamical diffraction, DFT simulations of the momentum space are required to extract quantitative information from the measurement. We present an example in this work. This also means that the measured difference depends on parameters such as crystal thickness and orientation. It has been recently proposed that a way to overcome this limitation would be to use so-called electron vortex beams. EMCD would then be applied to a larger class of samples and become a true complementary alternative to XMCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erskine JL, Stern EA (1975) Calculation of the M2,3 magneto-optical absorption spectrum of ferromagnetic nickel. Phys Rev B 12:5016–5024

    Article  ADS  Google Scholar 

  2. Schütz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G (1987) Absorption of circularly polarized X-rays in iron. Phys Rev Lett 58:737–740

    Article  ADS  Google Scholar 

  3. Chen CT, Sette F, Ma Y, Modesti S (1990) Soft-X-ray magnetic circular dichroism at the L2,3 edges of nickel. Phys Rev B 42:7262–7265

    Article  ADS  Google Scholar 

  4. Lovesey SW, Collins SP (1996) X-Ray scattering and absorption by magnetic materials. Clarendon, Oxford

    Google Scholar 

  5. Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943–1946

    Article  ADS  Google Scholar 

  6. Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70:694–697

    Article  ADS  Google Scholar 

  7. Chen CT, Idzerda YU, Lin HJ, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152–155

    Article  ADS  Google Scholar 

  8. Rubino S (2007) Magnetic circular dichroism in the transmission electron microscope. PhD thesis, Vienna University of Technology

    Google Scholar 

  9. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New York

    Google Scholar 

  10. Hitchcock AP (1993) Near edge electron energy loss spectroscopy: comparison to X-ray absorption. Jpn J Appl Phys 32:176–181

    Google Scholar 

  11. Yuan J, Menon NK (1997) Magnetic linear dichroism in electron energy loss spectroscopy. J Appl Phys 81:5087–5089

    Article  ADS  Google Scholar 

  12. Hébert C, Schattschneider P (2003) A proposal for dichroic experiments in the electron microscope. Ultramicroscopy 96:463–468

    Article  Google Scholar 

  13. Hébert C, Schattschneider P, Rubino S, Novák P, Rusz J, Stöger-Pollach M (2003) Magnetic circular dichroism in electron energy loss spectrometry. Ultramicroscopy 108:277–284

    Article  Google Scholar 

  14. Verbeeck J, Tian H, Schattschneider P (2010) Production and application of electron vortex beams. Nature 467:301–304

    Article  ADS  Google Scholar 

  15. Nelhiebel M, Schattschneider P, Jouffrey B (2000) Observation of ionization in a crystal interferometer. Phys Rev Lett 85:1847–1850

    Google Scholar 

  16. Schattschneider P, Rubino S, Hébert C, Rusz J, Kunes J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441:486–488

    Article  ADS  Google Scholar 

  17. Rubino S, Schattschneider P, Rusz J, Verbeeck J, Leifer K (2010) Simulation of magnetic circular dichroism in the electron microscope. J Phys D Appl Phys 43:474005

    Article  ADS  Google Scholar 

  18. Rusz J, Oppeneer PM, Lidbaum H, Rubino S, Leifer K (2009) Asymmetry of the two-beam geometry in EMCD experiments. J Microsc 237:465–468

    Article  MathSciNet  Google Scholar 

  19. Verbeeck J, Hébert C, Rubino S, Novák P, Rusz J, Houdellier F, Gatel C, Schattschneider P (2008) Optimal aperture sizes and positions for EMCD experiments. Ultramicroscopy 108:865–872

    Article  Google Scholar 

  20. Rusz J, Rubino S, Schattschneider P (2007) First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets. Phys Rev B 75:214425

    Article  ADS  Google Scholar 

  21. Rusz J, Novák P, Rubino S, Hébert C, Schattschneider P (2008) Magnetic circular dichroism in electron microscopy. Acta Phys Pol A 113:599–604

    Google Scholar 

  22. Warot-Fonrose B, Houdellier F, Hÿtch MJ, Calmels L, Serin V, Snoeck E (2008) Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique. Ultramicroscopy 108:393–398

    Article  Google Scholar 

  23. Lidbaum H, Rusz J, Liebig A, Hjörvarsson B, Oppeneer PM, Coronel E, Eriksson O, Leifer K (2009) Quantitative magnetic information from reciprocal space maps in transmission electron microscopy. Phys Rev Lett 102:037201

    Article  ADS  Google Scholar 

  24. Lidbaum H, Rusz J, Rubino S, Liebig A, Hjörvarsson B, Oppeneer PM, Eriksson O, Leifer K (2010) Reciprocal and real space maps for EMCD experiments. Ultramicroscopy 110:1380

    Article  Google Scholar 

  25. Rusz J, Eriksson O, Novák P, Oppeneer PM (2007) Sum rules for electron energy loss near edge spectra. Phys Rev B 76:060408(R)

    Article  ADS  Google Scholar 

  26. Schattschneider P, Rubino S, Stöger-Pollach M, Hébert C, Rusz J, Calmels L, Snoeck E (2008) Energy loss magnetic chiral dichroism: a new technique for the study of magnetic properties in the electron microscope. J Appl Phys 103:07D931

    Article  Google Scholar 

  27. Rusz J, Lidbaum H, Liebig A, Hjörvarsson B, Oppeneer PM, Rubino S, Eriksson O, Leifer K (2010) Quantitative magnetic measurements with transmission electron microscope. J Magn Magn Mater 322:1478–1480

    Article  ADS  Google Scholar 

  28. Rusz J, Lidbaum H, Rubino S, Hjörvarsson B, Oppeneer PM, Eriksson O, Leifer K (2011) Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements. Phys Rev B 83:132402

    Article  ADS  Google Scholar 

  29. Schattschneider P, Verbeeck J, Hamon AL (2009) Real space maps of atomic transitions. Ultramicroscopy 109:781–787

    Article  Google Scholar 

  30. Schattschneider P, Ennen I, Stöger-Pollach M, Verbeeck J, Mauchamp V, Jaouen M (2010) Real space maps of magnetic moments on the atomic scale: theory and feasibility. Ultramicroscopy 110:1038–1041

    Article  Google Scholar 

  31. Schattschneider P, Hébert C, Rubino S, Stöger-Pollach M, Rusz J, Novák P (2008) Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108:433–438

    Article  Google Scholar 

  32. Schattschneider P, Stöger-Pollach M, Rubino S, Sperl M, Hurm C, Zweck J, Rusz J (2008) Detection of magnetic circular dichroism on the 2 nanometer scale. Phys Rev B 78:104413

    Article  ADS  Google Scholar 

  33. Rubino S, Schattschneider P, Stöger-Pollach M, Hébert C, Rusz J, Calmels L, Warot-Fonrose B, Houdellier F, Serin V, Novák P (2008) Energy-loss magnetic chiral dichroism (EMCD): magnetic chiral dichroism in the electron microscope. J Mater Res 23:2582–2590

    Article  ADS  Google Scholar 

  34. Klie RF, Yuan T, Tanase M, Yang G, Ramasse Q (2010) Direct measurement of ferromagnetic ordering in biaxially strained LaCoO3 thin films. Appl Phys Lett 96:082510

    Article  ADS  Google Scholar 

  35. Zhang ZH, Wang X, Xu JB, Muller S, Ronning C, Li Q (2009) Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat Nanotechnol 4:523–527

    Article  ADS  Google Scholar 

  36. Stöger-Pollach M, Treiber CD, Resch GP, Keays DA, Ennen I (2011) EMCD real space maps of magnetospirillum magnetotacticum. Micron 47:456–460

    Article  Google Scholar 

  37. Verbeeck J et al (2011) Atomic scale electron vortices for nanoresearch. Appl Phys Lett 99:203109

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Rubino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rubino, S., Rusz, J., Schattschneider, P. (2012). Detection of Magnetic Circular Dichroism Using TEM and EELS. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5580-2_39

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5579-6

  • Online ISBN: 978-94-007-5580-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics