Skip to main content

Structure Solution – An Overview

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

The structure solution process consists of a series of steps, each requiring decisions and each depending upon the previous ones having been performed correctly. The preliminary steps involve selecting the best sample, choosing the most appropriate radiation, collecting the data, indexing the pattern, determining the most probable space group(s), and estimating the profile parameters. If extracted intensities are to be used for structure solution, something must be done about the overlapping reflections. They can be equipartitioned, or, if necessary, more sophisticated approaches can be applied to improve the partitioning. At this point, the structure solution algorithm most appropriate for the material and the data must be chosen and applied. Finally, the (partial) structural model has to be completed and refined. The art of structure determination from powder diffraction data lies in finding a viable path through the maze of possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. Acta Crystallogr 2:65–71

    Google Scholar 

  2. Snyder RL (1993) Analytical profile fitting of X-ray powder diffraction profiles in Rietveld analysis. In: Young RA (ed) The Rietveld method. Oxford University Press, Oxford, pp 111–131

    Google Scholar 

  3. David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, Oxford

    Google Scholar 

  4. Baerlocher Ch, McCusker LB (eds) (2004) Structure determination from powder diffraction data. Z Kristallogr 219:782–901

    Google Scholar 

  5. David WIF, Shankland K (2008) Structure determination from powder diffraction data. Acta Crystallogr A64:52–64

    ADS  Google Scholar 

  6. Whitfield P (2013) Laboratory X-ray powder diffraction. In: Kolb U, Shankland K, Meshi L, Avilov A, David WIF (eds) Uniting electron crystallography and powder diffraction, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 53–64

    Google Scholar 

  7. Gozzo F (2013) Synchrotron X-ray powder diffraction. In: Kolb U, Shankland K, Meshi L, Avilov A, David WIF (eds) Uniting electron crystallography and powder diffraction, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 65–82

    Google Scholar 

  8. Pawley GS (1981) Unit cell refinement from powder diffraction scans. J Appl Crystallogr 14:357–361

    Article  Google Scholar 

  9. Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO4 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  10. David WIF, Sivia DS (2002) Extracting integrated intensities from powder diffraction patterns. In: David WIF, Shankland K, McCusker LB, Baerlocher C (eds) Structure determination from powder diffraction data. Oxford University Press, Oxford, pp 136–161

    Google Scholar 

  11. (a) Fernandes P, Shankland K, David WIF, Markvardsen AJ, Florence AJ, Shankland N, Leech CK (2008) A differential thermal expansion approach to crystal structure determination from powder diffraction data. J Appl Crystallogr 41:1089–1094. (b) Wright JP (2004) Extraction and use of correlated integrated intensities with powder diffraction data. Z Kristallogr 219:791–802

    Google Scholar 

  12. Von Dreele RB (2007) Multipattern Rietveld refinement of protein powder data: an approach to higher resolution. J Appl Crystallogr 40:133–143

    Article  Google Scholar 

  13. Baerlocher Ch, McCusker LB, Prokic S, Wessels T (2004) Exploiting texture to estimate the relative intensities of overlapping reflections. Z Kristallogr 219:803–812

    Google Scholar 

  14. Altomare A, Caliandro R, Camalli M, Cuocci C, Giacovazzo C, Moliterni AGG, Rizzi R (2004) Automatic structure determination from powder data with EXPO2004. J Appl Crystallogr 37:1025–1028

    Article  Google Scholar 

  15. Rius J, Frontera C (2007) Application of the constrained S-FFT direct-phasing method to powder diffraction data XIII. J Appl Crystallogr 40:1035–1038

    Article  Google Scholar 

  16. Gilmore C, Dong W, Bricogne G (1999) A multisolution method of phase determination by combined maximization of entropy and likelihood. VI. The use of error-correcting codes as a source of phase permutation and their application to the phase problem in powder, electron and macromolecular crystallography. Acta Crystallogr A55:70–83

    Google Scholar 

  17. Rius J (2011) Patterson-function direct methods for structure determination of organic compounds from powder diffraction data XVI. Acta Crystallogr A67:63–67

    ADS  Google Scholar 

  18. Favre-Nicolin V, Cerny R (2004) A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z Kristallogr 219:847–856

    Article  Google Scholar 

  19. David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) DASH: a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915

    Article  Google Scholar 

  20. Grosse-Kunstleve RW, McCusker LB, Baerlocher C (1997) Powder diffraction data and crystal chemical information combined in an automated structure determination procedure for zeolites. J Appl Crystallogr 30:985–995

    Article  Google Scholar 

  21. Altomare A, Caliandro R, Cuocci C, Giacovazzo C, Moliterni AGG, Rizzi R, Platteau C (2008) Direct methods and simulated annealing: a hybrid approach for powder diffraction data. J Appl Crystallogr 41:56–61

    Article  Google Scholar 

  22. Oszlányi G, Sütő A (2004) Ab initio structure solution by charge flipping. Acta Crystallogr A60:134–141

    ADS  Google Scholar 

  23. (a) Wu J, Leinenweber K, Spence JCH, O’Keeffe M (2006) Ab initio phasing of X-ray powder diffraction patterns by charge flipping. Nat Mater 5:647–652. (b) Baerlocher Ch, McCusker LB, Palatinus L (2007) Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z Kristallogr 222:47–53

    Google Scholar 

  24. Palatinus L, Chapuis G (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790

    Article  Google Scholar 

  25. Zhang KYJ, Main P (1990) Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr A46:41–46

    Google Scholar 

  26. Coelho AA (2007) A charge-flipping algorithm incorporating the tangent formula for solving difficult structures. Acta Crystallogr A63:400–406

    ADS  Google Scholar 

  27. (a) Stephens P (2013) Rietveld refinement. In: Kolb U, Shankland K, Meshi L, Avilov A, David WIF (eds) Uniting electron crystallography and powder diffraction, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 15–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne B. McCusker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

McCusker, L.B., Baerlocher, C. (2012). Structure Solution – An Overview. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_3

Download citation

Publish with us

Policies and ethics