Skip to main content

Powder Diffraction+Computational Methods

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

It is proposed that the application of computational methods provides an attractive route towards structures, whose accuracy is well-comparable to that typical for single crystal standards. Although theoretical calculations and powder diffraction seemingly represent completely disjunctive sets, it is demonstrated that they could meet at three stages of structure analysis from powders – initial model building, structure refinement and crystal chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Because it is not the role of this contribution to provide a comprehensive list of all the approaches and of the relevant computer codes, a reader is asked to visit e.g. http://www.psi-k.org/codes.shtml

References

  1. Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  2. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. McGraw-Hill, New York

    Google Scholar 

  3. Immirzi A (2009) Constraints and restraints in crystal structure analysis. J Appl Crystallogr 42:362–364

    Article  Google Scholar 

  4. Afonine PV, Grosse-Kunstleve RW, Urzhumtsev A, Adams PD (2009) Automatic multiple-zone rigid-body refinement with a large convergence radius. J Appl Crystallogr 42:607–615

    Article  Google Scholar 

  5. Dinnebier RE, Ding L, Kuangbiao M, Neumann MA, Tanpipat N, Leusen FJL, Stephens PW, Wagner M (2001) Crystal structure of a rigid ferrocene-based macrocycle from high-resolution X-ray powder diffraction. Organometallics 20:5642–5647

    Article  Google Scholar 

  6. Neumann MA, Tedesco C, Destri S, Ferro DR, Porzio W (2002) Bridging the gap – structure determination of the red polymorph of tetrahexylsexithiophene by Monte Carlo simulated annealing, first-principles DFT calculations and Rietveld refinement. J Appl Crystallogr 35:296–303

    Article  Google Scholar 

  7. Bhattacharya A, Kankanala K, Pal S, Mukherjee AK (2010) A nimesulide derivative with potential anti-inflammatory activity: synthesis, X-ray powder structure analysis and DFT study. J Mol Struct 975:40–46

    Article  ADS  Google Scholar 

  8. Brodski V, Peschar R, Schenk H, Brinkmann A, Van Eck ERH, Kentgens APM, Coussens B, Braam A (2004) Structure of melaminium dihydrogenpyrophosphate and its formation from melaminium dihydrogenphosphate studied with powder diffraction data, solid-state NMR, and theoretical calculations. J Phys Chem B108:15069–15076

    Google Scholar 

  9. Das U, Chattopadhyay B, Mukherjee M, Mukherjee AK (2011) Crystal structure and electronic properties of three phenylpropionic acid derivatives: a combined X-ray powder diffraction and quantum mechanical study. Chem Phys Lett 501:351–357

    Article  ADS  Google Scholar 

  10. Kaduk JA (2002) Terephthalate salts of dipositive cations. Acta Crystallogr B58:815–822

    Google Scholar 

  11. Kaduk JA (2002) Aromatic carboxylate salts terephthalates. Trans Am Crystallogr Assoc 37:63–84

    Google Scholar 

  12. Kaduk JA, Toft MA, Golab JT (2010) Crystal structure of antimony oxalate hydroxide, Sb(C2O4)OH. Powder Diffr 25:19–24

    Article  ADS  Google Scholar 

  13. Whitfield PS, Le Page Y, Davidson IJ (2009) Ab initio structure determination of the low temperature phase of succinonitrile from X-ray powder diffraction data – coping with potential poor quality using DFT ab initio methods. Powder Diffr 23:292–299

    Article  ADS  Google Scholar 

  14. Whitfield PS, Mitchell LD, Lepage Y, Margeson J, Roberts AC (2010) Crystal structure of the mineral strontiodresserite from laboratory powder diffraction data. Powder Diffr 25:322–328

    Article  ADS  Google Scholar 

  15. Florence AJ, Bardin J, Johnston B, Shankland N, Griffin TAN, Shankland K (2009) Structure determination from powder data: Mogul and CASTEP. Z Krist Suppl 30:215–220

    Article  Google Scholar 

  16. Jorík V, Scholtzová E, Segl’a P (2008) Combined powder diffraction and solid-state DFT study of [Cu(2,6-dimethoxynicotinate)(2)(muronicol)(2)](n) complex. Z Krist 223:524–529

    Article  Google Scholar 

  17. Smrčok L, Jorík V, Scholtzová E, Milata V (2007) Ab initio structure determination of 5-anilinomethylene-2,2-dimethyl-1,3-dioxane-4,6-dione from laboratory powder data – a combined use of X-ray, molecular and solid-state DFT study. Acta Crystallogr B63:477–484

    Google Scholar 

  18. Smrčok L, Brunelli M, Boča M, Kucharík M (2008) Structure of K2TaF7 at 993 K: the combined use of synchrotron powder data and solid-state DFT calculations. J Appl Crystallogr 41:634–636

    Article  Google Scholar 

  19. Smrčok L, Bitschnau B, Filinchuk Y (2008) Low temperature powder diffraction and DFT solid state computational study of hydrogen bonding in NH4VO3. Cryst Res Technol 44:978–984

    Article  Google Scholar 

  20. Smrčok L, Kucharík M, Tovar M, Žižak I (2009) High temperature powder diffraction and solid state DFT study of beta-cryolite (Na3AlF6). Cryst Res Technol 44:834–840

    Article  Google Scholar 

  21. Smrčok L, Černý R, Boča M, Macková I, Kubíková B (2010) K3TaF8 from laboratory X-ray powder data. Acta Crystallogr C66:I16–I18

    Google Scholar 

  22. van de Streek J, Neumann MA (2010) Validation of experimental molecular crystal structures with dispersion-corrected density functional theory of calculations. Acta Crystallogr B66:544–558

    Google Scholar 

  23. Milman V, Refson K, Clark SJ, Pickard CJ, Yates JR, Gao S-P, Hasnip PJ, Probert MIJ, Perlov A, Segall MD (2010) Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials CASTEP implementation. J Mol Struct (THEOCHEM) 954:22–35

    Article  Google Scholar 

  24. Hafner J (2000) Atomic-scale computational materials science. Acta Mater 48:71–92

    Article  Google Scholar 

  25. Gillan MJ (1997) The virtual matter laboratory. Contemp Phys 38:115–130

    Article  ADS  Google Scholar 

  26. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  Google Scholar 

  27. Weinhold F, Landis C (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Langer V, Mach P, Smrčok L, Milata V (2009) (E)-Methyl 2-[(2-flourophenyl)aminomethylene]-3-oxobutanoate: X-ray and density functional (DFT) study. Acta Crystallogr C65:o183–o185

    Google Scholar 

  29. Bent HA (1961) An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem Rev 61:276–311

    Article  Google Scholar 

  30. Ahlrichs R, Eichhőfer A, Fenske D, Hampe O, Kappes MM, Nava P, Olkowska-Oetzel J (2004) Synthesis and structure of [Ag26In18S36Cl6(dppm)10(thf)4] [InCl4(thf)]2 – a combined approach of theory and experiment. Angew Chem Int Ed 43:3823–3827

    Article  Google Scholar 

  31. Skorczyk R (1976) The calculation of crystal energies as an aid in structural chemistry 1: a semi-empirical potential field model with atomic constants as parameters. Acta Crystallogr A32:447–452

    ADS  Google Scholar 

Download references

Acknowledgement

This contribution was partially supported by Slovak Grant Agency VEGA under the contract 2/0150/09. My thanks are to P. Mach for his critical reading of a draft of the text and also to R. Skorczyk, whom I have never met, but whose paper [31] has many years ago triggered my interest in the field of solid-state calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L’ubomír Smrčok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Smrčok, L. (2012). Powder Diffraction+Computational Methods. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5580-2_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5579-6

  • Online ISBN: 978-94-007-5580-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics