Skip to main content

Proteins and Powders: Technical Developments

  • Conference paper
  • First Online:
Uniting Electron Crystallography and Powder Diffraction

Abstract

Protein powder samples offer many technical challenges for powder diffraction experiments and data analysis. Samples are sensitive to radiation damage and the large unit cells lead to severe peak overlaps, creating interesting challenges. Powder diffraction remains as the unique tool to characterize certain polymorphic forms of crystalline proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Dreele RB (1999) Combined Rietveld and stereochemical restraint refinement of a protein crystal structure. J Appl Crystallogr 32:1084–1089

    Article  Google Scholar 

  2. Larson AC, Von Dreele RB (1994) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, pp 86–748. see: http://www.ccp14.ac.uk/solution/gsas/

  3. Margiolaki I, Wright JP (2008) Powder crystallography on macromolecules. Acta Crystallogr A64:169–180

    ADS  Google Scholar 

  4. Von Dreele RB (2003) Protein crystal structure analysis from high-resolution X-ray powder-diffraction data. Methods Enzymol 368:254–267

    Article  Google Scholar 

  5. Margiolaki I, Wright JP, Fitch AN, Fox GC, Labrador A, Von Dreele RB, Miura K, Gozzo F, Schiltz M, Besnard C, Camus F, Pattison P, Beckers D, Degen T (2007) Powder diffraction studies on proteins: an overview of data collection approaches. Zeitschrift für Kristallographie Suppl 26:1–13

    Article  Google Scholar 

  6. Watier Y, Fitch AN (2010) Protein powder diffraction with Topas. Mater Sci Forum 651:117–129

    Article  Google Scholar 

  7. Hartmann CG, Nielsen OF, Ståhl K, Harris P (2010) In-house characterization of protein powder. J Appl Crystallogr 43:876–882

    Article  Google Scholar 

  8. Fenn TD, Schnieders MJ, Brunger AT (2010) A smooth and differentiable bulk-solvent model for macromolecular diffraction. Acta Crystallogr D66:1024–1031

    Google Scholar 

  9. Jenner MJ, Wright JP, Margiolaki I, Fitch AN (2007) Successful protein cryocooling for powder diffraction. J Appl Crystallogr 40:121–124

    Article  Google Scholar 

  10. Watier Y (2011) Powder diffraction studies of proteins. Ph.D thesis, University Joseph Fourier, Grenoble

    Google Scholar 

  11. Bergamaschi A, Cervellino A, Dinapoli R, Gozzo F, Henrich B, Johnson I, Kraft P, Mozzanica A, Schmitt B, Shi X (2010) The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. J Synchrotron Radiat 17:653–668

    Article  Google Scholar 

  12. Doebbler JA, Von Dreele RB (2009) Application of molecular replacement to protein powder data from image plates. Acta Crystallogr D65:348–355

    Google Scholar 

  13. Vaughan GBM, Wright JP, Bytchkov A, Rossat M, Gleyzolle H, Snigireva I, Snigirev A (2011) X-ray transfocators: focusing devices based on compound refractive lenses. J Synchrotron Radiat 18:125–133

    Article  Google Scholar 

  14. Papageorgiou N, Watier Y, Saunders L, Coutard B, Lantez V, Gould EA, Fitch AN, Wright JP, Canard B, Margiolaki I (2010) Preliminary insights into the non structural protein 3 macro domain of the Mayaro virus by powder diffraction. Zeitschrift für Kristallographie 225:576–580

    Article  ADS  Google Scholar 

  15. Oka T, Miura K, Inoue K, Ueki T, Yagi N (2006) High-resolution powder diffraction study of purple membrane with a large Guinier-type camera. J Synchrotron Radiat 13:281–284

    Article  Google Scholar 

  16. See http://www.totalcryst.dk/

  17. Wright JP http://sourceforge.net/apps/trac/fable/wiki/imaged11

  18. Paithankar KS, Sorensen HO, Wright JP, Schmidt S, Poulsen HF, Garman EF (2011) Simultaneous X-ray diffraction from multiple single crystals of macromolecules. Acta Crystallogr D 67:608–618

    Article  Google Scholar 

  19. David WIF, Shankland K, Shankland N (1998) Routine determination of molecular crystal structures from powder diffraction data. Chem Commun 931

    Google Scholar 

  20. Brunelli M, Wright JP, Vaughan GBM, Mora AJ, Fitch AN (2003) Solving larger molecular crystal structures from powder diffraction data by exploiting anisotropic thermal expansion. Angew Chem Int Ed 42:2029–2032

    Article  Google Scholar 

  21. Margiolaki I, Wright JP, Wilmanns M, Fitch AN, Pinotsis N (2007) Second SH3 Do-main of ponsin solved from powder diffraction. J Am Chem Soc 129:11865–11871

    Article  Google Scholar 

  22. Basso S, Fitch AN, Fox GC, Margiolaki I, Wright JP (2005) High-throughput phase-diagram mapping via powder diffraction: a case study of HEWL versus pH. Acta Crystallogr D61:1612–1625

    Google Scholar 

  23. Von Dreele RB (2007) Multipattern Rietveld refinement of protein powder data: an approach to higher resolution. J Appl Crystallogr 40:133–143

    Article  Google Scholar 

  24. Besnard C, Camus F, Fleurant M, Dahlström A, Wright JP, Margiolaki I, Pattison P, Schiltz M (2007) Exploiting X-ray induced anisotropic lattice changes to improve intensity extraction in protein powder diffraction: application to heavy atom detection. Zeitschrift für Kristallographie Suppl 26:39–44

    Article  Google Scholar 

  25. Wright JP, Markvardsen AJ, Margiolaki I (2007) Likelihood methods with protein powder diffraction data. Z Kristallogr Suppl 26:27–32

    Article  Google Scholar 

  26. Wright JP, Besnard C, Margiolaki I, Basso S, Camus F, Fitch AN, Fox GC, Pattison P, Schiltz M (2008) Molecular envelopes derived from protein powder diffraction data. J Appl Crystallogr 41:329–339

    Article  Google Scholar 

  27. Basso S, Besnard C, Wright JP, Margiolaki I, Fitch AN, Pattison P, Schiltz M (2010) Features of the secondary structure of a protein molecule from powder diffraction data. Acta Crystallogr D66:756–776

    Google Scholar 

  28. Helliwell JR, Bell AMT, Bryant P, Fisher S, Habash J, Madeleine H, Irene M, Kaenket S, Yves W, Wright JP, Yalamanchilli S (2010) Time-dependent analysis of K2PtBr6 binding to lysozyme studied by protein powder and single crystal X-ray analysis. Zeitschrift für Kristallographie 225:570–575

    Article  ADS  Google Scholar 

  29. Prandl W (1990) Phase determination and Patterson maps from multiwave powder data. Acta Crystallogr A46:988–992

    Google Scholar 

  30. Prandl W (1994) Phase determination from X-ray powder diffraction data. II. Partial Patterson maps and the localization of anomalously scattering atoms. Acta Crystallogr A50:52–55

    Google Scholar 

  31. Altomare A, Burla MC, Cuocci C, Giacovazzo C, Gozzo F, Moliterni A, Polidori G, Rizzi R (2009) MAD techniques applied to powder data: finding the structure given the sub-structure. Acta Crystallogr A65:291–299

    ADS  Google Scholar 

  32. Altomare A, Belviso BD, Burla MC, Campi G, Cuocci C, Giacovazzo C, Gozzo F, Moliterni A, Polidori G, Rizzi R (2009) Multiple-wavelength anomalous dispersion techniques applied to powder data: a probabilistic method for finding the substructure via joint probability distribution functions. J Appl Crystallogr 42:30–35

    Article  Google Scholar 

  33. Wright JP (2004) Extraction and use of correlated integrated intensities with powder diffraction data. Zeitschrift für Kristallographie 219:791–802

    Article  ADS  Google Scholar 

  34. Schroeder GF, Levitt M, Brunger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222

    Article  ADS  Google Scholar 

  35. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am especially grateful to my collaborators in this adventure into protein powder diffraction; Irene Margiolaki, Yves Watier and Andy Fitch and all of the students and colleagues who have carried the work that was summarized here. We thank the ESRF for provision of synchrotron beamtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wright, J.P. (2012). Proteins and Powders: Technical Developments. In: Kolb, U., Shankland, K., Meshi, L., Avilov, A., David, W. (eds) Uniting Electron Crystallography and Powder Diffraction. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5580-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5580-2_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5579-6

  • Online ISBN: 978-94-007-5580-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics