Skip to main content

From Family Study to Population Study: A History of Genetic Mapping for Nasopharyngeal Carcinoma (NPC)

  • Chapter
  • First Online:
Applied Computational Genomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 1))

  • 2072 Accesses

Abstract

Nasopharyngeal carcinoma (NPC) has a unique global distribution pattern – Southeast Asia and some other localized regions of the eastern hemisphere – that suggests risk is largely driven by a combination of environmental exposures and specific genetic factors. Earlier linkage analysis has implicated loci in the human leukocyte antigen (HLA) gene region, thus suggesting a role for immunological mechanisms in NPC resistance. Nevertheless, the implications of the HLA associations remain enigmatic. More recent association studies have sought to advance our understanding of the genes important to NPC risk. Reviewed here are recent epidemiologic studies that have addressed the genetics of NPC risk, and the implications of their collective findings are discussed. The primary focus is on the latest candidate-gene association studies (CGAS) and genome-wide association studies (GWAS), and attempts are made to harmonize their findings and resolve discrepancies. Taken together, the studies support the importance of the HLA loci, but also implicate non-HLA genes both inside and outside the HLA region, and suggest that the mechanisms of NPC risk go beyond immunology. Finally, recommendations are made to coordinate future CGAS and GWAS to maximize their information content and make best use of the limited number of available NPC study populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey SG, Verrall E, et al. Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol. 2009;83(21):11116–22.

    Article  PubMed  CAS  Google Scholar 

  • Bansal V, Libiger O, et al. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11(11):773–85.

    Article  PubMed  CAS  Google Scholar 

  • Bei JX, Li Y, et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet. 2010;42(7):599–603.

    Article  PubMed  CAS  Google Scholar 

  • Ben Nasr H, Chahed K, et al. Association of IL-8 (−251)T/A polymorphism with susceptibility to and aggressiveness of nasopharyngeal carcinoma. Hum Immunol. 2007;68(9):761–9.

    Article  PubMed  CAS  Google Scholar 

  • Ben Nasr H, Hamrita B, et al. A single nucleotide polymorphism in the E-cadherin gene promoter −160 C/A is associated with risk of nasopharyngeal cancer. Clin Chim Acta. 2010;411(17–18):1253–7.

    Article  PubMed  CAS  Google Scholar 

  • Berwick M, Vineis P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst. 2000;92(11):874–97.

    Article  PubMed  CAS  Google Scholar 

  • Brandtzaeg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol. 2009;70(6):505–15.

    Article  PubMed  CAS  Google Scholar 

  • Brennan B. Nasopharyngeal carcinoma. Orphanet J Rare Dis. 2006;1:23.

    Article  PubMed  Google Scholar 

  • Burren OS, Adlem EC, et al. T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Res. 2010;39(Database issue):D997–1001.

    PubMed  Google Scholar 

  • Cao Y, Miao XP, et al. Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population. BMC Cancer. 2006;6:167.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Miao XP, et al. Polymorphisms of methylenetetrahydrofolate reductase are associated with a high risk of nasopharyngeal carcinoma in a smoking population from Southern China. Mol Carcinog. 2010a;49(11):928–34.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Miao XP, et al. Polymorphisms of death pathway genes FAS and FASL and risk of nasopharyngeal carcinoma. Mol Carcinog. 2010b;49(11):944–50.

    Article  PubMed  CAS  Google Scholar 

  • Cao SM, Simons MJ, et al. The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer. 2011;30(2):114–19.

    Article  PubMed  CAS  Google Scholar 

  • Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15(10):1765–77.

    Article  PubMed  CAS  Google Scholar 

  • Cheng YJ, Chien YC, et al. No association between genetic polymorphisms of CYP1A1, GSTM1, GSTT1, GSTP1, NAT2, and nasopharyngeal carcinoma in Taiwan. Cancer Epidemiol Biomarkers Prev. 2003;12(2):179–80.

    PubMed  CAS  Google Scholar 

  • Cheung HW, Chun AC, et al. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents. Cancer Res. 2006;66(8):4357–67.

    Article  PubMed  CAS  Google Scholar 

  • Chew MM, Gan SY, et al. Interleukins, laminin and Epstein – Barr virus latent membrane protein 1 (EBV LMP1) promote metastatic phenotype in nasopharyngeal carcinoma. BMC Cancer. 2010;10:574.

    Article  PubMed  CAS  Google Scholar 

  • Cho EY, Hildesheim A, et al. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev. 2003;12(10):1100–4.

    PubMed  CAS  Google Scholar 

  • Chou J, Lin YC, et al. Nasopharyngeal carcinoma – review of the molecular mechanisms of tumorigenesis. Head Neck. 2008;30(7):946–63.

    Article  PubMed  Google Scholar 

  • Crowson AN, Magro C, et al. The molecular basis of melanomagenesis and the metastatic phenotype. Semin Oncol. 2007;34(6):476–90.

    Article  PubMed  CAS  Google Scholar 

  • de la Barrera S, Aleman M, et al. Toll-like receptors in human infectious diseases. Curr Pharm Des. 2006;12(32):4173–84.

    Article  PubMed  Google Scholar 

  • Deng L, Zhao XR, et al. Cyclin D1 polymorphism and the susceptibility to NPC using DHPLC. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2002;34(1):16–20.

    CAS  Google Scholar 

  • Dodd LE, Sengupta S, et al. Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15(11):2216–25.

    Article  PubMed  CAS  Google Scholar 

  • Duh FM, Fivash M, et al. Characterization of a new SNP c767A/T (Arg222Trp) in the candidate TSG FUS2 on human chromosome 3p21.3: prevalence in Asian populations and analysis of association with nasopharyngeal cancer. Mol Cell Probes. 2004;18(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  • Farhat K, Hassen E, et al. Functional IL-18 promoter gene polymorphisms in Tunisian nasopharyngeal carcinoma patients. Cytokine. 2008;43(2):132–7.

    Article  PubMed  CAS  Google Scholar 

  • Fendri A, Masmoudi A, et al. Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther. 2009;8(5):444–51.

    Article  PubMed  CAS  Google Scholar 

  • Fendri A, Khabir A, et al. Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma. Cancer Invest. 2010;28(9):896–903.

    Article  PubMed  CAS  Google Scholar 

  • Feng XL, Zhou W, et al. The DLC-1–29A/T polymorphism is not associated with nasopharyngeal carcinoma risk in Chinese population. Genet Test. 2008;12(3):345–9.

    Article  PubMed  CAS  Google Scholar 

  • Florian MC, Geiger H. Concise review: polarity in stem cells, disease, and aging. Stem Cells. 2010;28(9):1623–9.

    Article  PubMed  Google Scholar 

  • Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992;53(1):127–66.

    Article  PubMed  CAS  Google Scholar 

  • Gajwani BW, Devereaux JM, et al. Familial clustering of nasopharyngeal carcinoma. Cancer. 1980;46(10):2325–7.

    Article  PubMed  CAS  Google Scholar 

  • Gallicchio L, Matanoski G, et al. Adulthood consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: a systematic review. Int J Cancer. 2006;119(5):1125–35.

    Article  PubMed  CAS  Google Scholar 

  • Gao LB, Wei YS, et al. No association between epidermal growth factor and epidermal growth factor receptor polymorphisms and nasopharyngeal carcinoma. Cancer Genet Cytogenet. 2008;185(2):69–73.

    Article  PubMed  CAS  Google Scholar 

  • Gao LB, Liang WB, et al. Genetic polymorphism of interleukin-16 and risk of nasopharyngeal carcinoma. Clin Chim Acta. 2009;409(1–2):132–5.

    Article  PubMed  CAS  Google Scholar 

  • Grimm T, Schneider S, et al. EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood. 2005;105(8):3263–9.

    Article  PubMed  CAS  Google Scholar 

  • Gruhne B, Sompallae R, et al. Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene. 2009;28(45):3997–4008.

    Article  PubMed  CAS  Google Scholar 

  • Guo XC, Scott K, et al. Genetic factors leading to chronic Epstein-Barr virus infection and nasopharyngeal carcinoma in South East China: study design, methods and feasibility. Hum Genomics. 2006;2(6):365–75.

    Article  PubMed  CAS  Google Scholar 

  • Guo X, O’Brien SJ, et al. GSTM1 and GSTT1 gene deletions and the risk for nasopharyngeal carcinoma in Han Chinese. Cancer Epidemiol Biomarkers Prev. 2008;17(7):1760–3.

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Zeng Y, et al. Genetic Polymorphisms of CYP2E1, GSTP1, NQO1 and MPO and the risk of nasopharyngeal carcinoma in a Han Chinese population of Southern China. BMC Res Notes. 2010;3:212.

    Article  PubMed  CAS  Google Scholar 

  • Hadhri-Guiga B, Toumi N, et al. Proline homozygosity in codon 72 of TP53 is a factor of susceptibility to nasopharyngeal carcinoma in Tunisia. Cancer Genet Cytogenet. 2007;178(2):89–93.

    Article  PubMed  CAS  Google Scholar 

  • Haorah J, Zhou L, et al. Determination of total N-nitroso compounds and their precursors in frankfurters, fresh meat, dried salted fish, sauces, tobacco, and tobacco smoke particulates. J Agric Food Chem. 2001;49(12):6068–78.

    Article  PubMed  CAS  Google Scholar 

  • Hassen E, Farhat K, et al. TAP1 gene polymorphisms and nasopharyngeal carcinoma risk in a Tunisian population. Cancer Genet Cytogenet. 2007;175(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  • Hassen E, Nahla G, et al. The human leukocyte antigen class I genes in nasopharyngeal carcinoma risk. Mol Biol Rep. 2009;37(1):119–26.

    Article  PubMed  CAS  Google Scholar 

  • Hatzivassiliou E, Mosialos G. Cellular signaling pathways engaged by the Epstein-Barr virus transforming protein LMP1. Front Biosci. 2002;7:d319–29.

    Article  PubMed  CAS  Google Scholar 

  • Hawthorn L, Luce J, et al. Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast. BMC Cancer. 2010;10:460.

    Article  PubMed  CAS  Google Scholar 

  • He JF, Jia WH, et al. Genetic polymorphisms of TLR3 are associated with Nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer. 2007;7:194.

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zhou GQ, et al. Correlation of polymorphism of the coding region of glutathione S- transferase M1 to susceptibility of nasopharyngeal carcinoma in South China population. Ai Zheng. 2009;28(1):5–7.

    PubMed  Google Scholar 

  • Hemminki K, Rawal R, et al. Genetic epidemiology of cancer: from families to heritable genes. Int J Cancer. 2004;111(6):944–50.

    Article  PubMed  CAS  Google Scholar 

  • Hildesheim A, Chen CJ, et al. Cytochrome P4502E1 genetic polymorphisms and risk of nasopharyngeal carcinoma: results from a case–control study conducted in Taiwan. Cancer Epidemiol Biomarkers Prev. 1995;4(6):607–10.

    PubMed  CAS  Google Scholar 

  • Hildesheim A, Anderson LM, et al. CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst. 1997;89(16):1207–12.

    Article  PubMed  CAS  Google Scholar 

  • Hildesheim A, Dosemeci M, et al. Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2001;10(11):1145–53.

    PubMed  CAS  Google Scholar 

  • Hirohashi S, Kanai Y. Cell adhesion system and human cancer morphogenesis. Cancer Sci. 2003;94(7):575–81.

    Article  PubMed  CAS  Google Scholar 

  • Hirunsatit R, Kongruttanachok N, et al. Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer. BMC Genet. 2003;4:3.

    Article  PubMed  Google Scholar 

  • Ho SY, Wang YJ, et al. Evaluation of the associations between the single nucleotide polymorphisms of the promoter region of the tumor necrosis factor-alpha gene and nasopharyngeal carcinoma. J Chin Med Assoc. 2006;69(8):351–7.

    Article  PubMed  CAS  Google Scholar 

  • Hou DF, Wang SL, et al. Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro. Mol Cell Biochem. 2007;298(1–2):93–100.

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa M, Goto M, et al. DNA repair capacity measured by high throughput alkaline comet assays in EBV-transformed cell lines and peripheral blood cells from cancer patients and healthy volunteers. Mutat Res. 2005;588(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  • Jalbout M, Bouaouina N, et al. Polymorphism of the stress protein HSP70-2 gene is associated with the susceptibility to the nasopharyngeal carcinoma. Cancer Lett. 2003;193(1):75–81.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar A, Brickman TM, et al. Review of nasopharyngeal carcinoma. Ear Nose Throat J. 2006;85(3):168–70, 172–3, 184.

    PubMed  Google Scholar 

  • Ji MF, Wang DK, et al. Sustained elevation of Epstein-Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma. Br J Cancer. 2007;96(4):623–30.

    Article  PubMed  CAS  Google Scholar 

  • Jia WH, Collins A, et al. Complex segregation analysis of nasopharyngeal carcinoma in Guangdong, China: evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China). Eur J Hum Genet. 2005;13(2):248–52.

    Article  PubMed  CAS  Google Scholar 

  • Jia WH, Pan QH, et al. A case–control and a family-based association study revealing an association between CYP2E1 polymorphisms and nasopharyngeal carcinoma risk in Cantonese. Carcinogenesis. 2009;30(12):2031–6.

    Article  PubMed  CAS  Google Scholar 

  • Jiang JH, Jia WH, et al. Genetic polymorphisms of CYP2A13 and its relationship to nasopharyngeal carcinoma in the Cantonese population. J Transl Med. 2004;2(1):24.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen TJ, Ruczinski I, et al. Hypothesis-driven candidate gene association studies: practical design and analytical considerations. Am J Epidemiol. 2009;170(8):986–93.

    Article  PubMed  Google Scholar 

  • Kis LL, Takahara M, et al. Cytokine mediated induction of the major Epstein-Barr virus (EBV)-encoded transforming protein, LMP-1. Immunol Lett. 2006;104(1–2):83–8.

    Article  PubMed  CAS  Google Scholar 

  • Krishna SM, James S, et al. Expression of VEGF as prognosticator in primary nasopharyngeal cancer and its relation to EBV status. Virus Res. 2006;115(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  • Kung CP, Meckes Jr DG, et al. Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta. J Virol. 2011;85(9):4399–408.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Ren W, et al. Nucleotide sequence analysis of a transforming gene isolated from nasopharyngeal carcinoma cell line CNE2: an aberrant human immunoglobulin kappa light chain which lacks variable region. DNA Seq. 2001;12(5–6):331–5.

    PubMed  CAS  Google Scholar 

  • Li X, Fasano R, et al. HLA associations with nasopharyngeal carcinoma. Curr Mol Med. 2009;9(6):751–65.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Deng Y, et al. Diagnostic value of Epstein-Barr virus capsid antigen-IgA in nasopharyngeal carcinoma: a meta-analysis. Chin Med J (Engl). 2010;123(9):1201–5.

    Google Scholar 

  • Li Y, Fu L, et al. Identification of genes with allelic imbalance on 6p associated with nasopharyngeal carcinoma in southern Chinese. PLoS One. 2011;6(1):e14562.

    Article  PubMed  CAS  Google Scholar 

  • Liu MT, Chen YR, et al. Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene. 2004;23(14):2531–9.

    Article  PubMed  CAS  Google Scholar 

  • Liu MT, Chang YT, et al. Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene. 2005;24(16):2635–46.

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Cassar L, et al. Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma. Cell Res. 2006;16(10):809–17.

    Article  PubMed  CAS  Google Scholar 

  • Lo KW, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):451–62.

    Article  PubMed  CAS  Google Scholar 

  • Lu SJ, Day NE, et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature. 1990;346(6283):470–1.

    Article  PubMed  CAS  Google Scholar 

  • Madson JG, Hansen LA. Multiple mechanisms of Erbb2 action after ultraviolet irradiation of the skin. Mol Carcinog. 2007;46(8):624–8.

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Gutkind JS. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene. 2008;27 Suppl 2:S31–42.

    Article  PubMed  CAS  Google Scholar 

  • McElroy JP, Oksenberg JR. Multiple sclerosis genetics 2010. Neurol Clin. 2011;29(2):219–31.

    Article  PubMed  Google Scholar 

  • McKnight AJ, Currie D, et al. Targeted genome-wide investigation identifies novel SNPs associated with diabetic nephropathy. Hugo J. 2009;3(1–4):77–82.

    Article  PubMed  Google Scholar 

  • Meng H, Powers NR, et al. A dyslexia-associated variant in DCDC2 changes gene expression. Behav Genet. 2010;41(1):58–66.

    Article  PubMed  Google Scholar 

  • Miller WE, Earp HS, et al. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol. 1995;69(7):4390–8.

    PubMed  CAS  Google Scholar 

  • Mosialos G. Cytokine signaling and Epstein-Barr virus-mediated cell transformation. Cytokine Growth Factor Rev. 2001;12(2–3):259–70.

    Article  PubMed  CAS  Google Scholar 

  • Moutsianas L, Enciso-Mora V, et al. Multiple Hodgkin lymphoma-associated loci within the HLA region at chromosome 6p21.3. Blood. 2011;118(3):670–4.

    Article  PubMed  CAS  Google Scholar 

  • Nasr HB, Chahed K, et al. Functional vascular endothelial growth factor −2578 C/A polymorphism in relation to nasopharyngeal carcinoma risk and tumor progression. Clin Chim Acta. 2008;395(1–2):124–9.

    Article  PubMed  CAS  Google Scholar 

  • Nazar-Stewart V, Vaughan TL, et al. Glutathione S-transferase M1 and susceptibility to nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 1999;8(6):547–51.

    PubMed  CAS  Google Scholar 

  • Ng CC, Yew PY, et al. A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma. J Hum Genet. 2009;54(7):392–7.

    Article  PubMed  CAS  Google Scholar 

  • Niller HH, Wolf H, et al. Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia. Semin Cancer Biol. 2009;19(3):158–64.

    Article  PubMed  CAS  Google Scholar 

  • Nong LG, Luo B, et al. Interleukin-18 gene promoter polymorphism and the risk of nasopharyngeal carcinoma in a Chinese population. DNA Cell Biol. 2009;28(10):507–13.

    Article  PubMed  CAS  Google Scholar 

  • O’Nions J, Allday MJ. Epstein-Barr virus can inhibit genotoxin-induced G1 arrest downstream of p53 by preventing the inactivation of CDK2. Oncogene. 2003;22(46):7181–91.

    Article  PubMed  CAS  Google Scholar 

  • Pang MF, Lin KW, et al. The signaling pathways of Epstein-Barr virus-encoded latent membrane protein 2A (LMP2A) in latency and cancer. Cell Mol Biol Lett. 2009;14(2):222–47.

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Wacholder S, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42(7):570–5.

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Iscovich J. Risk of cancer in migrants and their descendants in Israel: II. Carcinomas and germ-cell tumours. Int J Cancer. 1997;70(6):654–60.

    Article  PubMed  CAS  Google Scholar 

  • Pokrovskaja K, Okan I, et al. Epstein-Barr virus infection and mitogen stimulation of normal B cells induces wild-type p53 without subsequent growth arrest or apoptosis. J Gen Virol. 1999;80(Pt 4):987–95.

    PubMed  CAS  Google Scholar 

  • Pratesi C, Bortolin MT, et al. Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunol Immunother. 2006;55(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  • Qin HD, Shugart YY, et al. Comprehensive pathway-based association study of DNA repair gene variants and the risk of nasopharyngeal carcinoma. Cancer Res. 2011;71(8):3000–8.

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Zheng H, et al. A functional single nucleotide polymorphism site detected in nasopharyngeal carcinoma-associated transforming gene Tx. Cancer Genet Cytogenet. 2005;157(1):49–52.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Antona C, Gomez A, et al. Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment. Hum Genet. 2009;127(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  • Rowe DT. Epstein-Barr virus immortalization and latency. Front Biosci. 1999;4:D346–71.

    Article  PubMed  CAS  Google Scholar 

  • Saha A, Murakami M, et al. Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2. J Virol. 2009;83(9):4652–69.

    Article  PubMed  CAS  Google Scholar 

  • Scelo G, Boffetta P, et al. Second primary cancers in patients with nasopharyngeal carcinoma: a pooled analysis of 13 cancer registries. Cancer Causes Control. 2007;18(3):269–78.

    Article  PubMed  Google Scholar 

  • Sckolnick J, Murphy J, et al. Microsatellite instability in nasopharyngeal and lymphoepithelial carcinomas of the head and neck. Am J Surg Pathol. 2006;30(10):1250–3.

    Article  PubMed  Google Scholar 

  • Shen GP, Pan QH, et al. Human genetic variants of homologous recombination repair genes first found to be associated with Epstein-Barr virus antibody titers in healthy Cantonese. Int J Cancer. 2011;129(6):1459–66.

    Article  PubMed  CAS  Google Scholar 

  • Simons MJ. Nasopharyngeal carcinoma as a paradigm of cancer genetics. Chin J Cancer. 2011;30(2):79–84.

    Article  PubMed  CAS  Google Scholar 

  • Simons MJ, Day NE, et al. Nasopharyngeal carcinoma V: immunogenetic studies of Southeast Asian ethnic groups with high and low risk for the tumor. Cancer Res. 1974;34(5):1192–5.

    PubMed  CAS  Google Scholar 

  • Siontis KC, Patsopoulos NA, et al. Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. Eur J Hum Genet. 2010;18(7):832–7.

    Article  PubMed  CAS  Google Scholar 

  • Slager SL, Rabe KG, et al. Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood. 2010;117(6):1911–16.

    Article  PubMed  CAS  Google Scholar 

  • Song C, Chen LZ, et al. Functional variant in the 3′-untranslated region of Toll-like receptor 4 is associated with nasopharyngeal carcinoma risk. Cancer Biol Ther. 2006;5(10):1285–91.

    Article  PubMed  CAS  Google Scholar 

  • Sousa H, Santos AM, et al. Linkage of TP53 codon 72 pro/pro genotype as predictive factor for nasopharyngeal carcinoma development. Eur J Cancer Prev. 2006;15(4):362–6.

    Article  PubMed  CAS  Google Scholar 

  • Sousa H, Breda E, et al. Genetic risk markers for nasopharyngeal carcinoma in Portugal: tumor necrosis factor alpha -308G >A polymorphism. DNA Cell Biol. 2010;30(2):99–103.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson D, Charalambous C, et al. Epstein-Barr virus latent membrane protein 1 (CAO) up-regulates VEGF and TGF alpha concomitant with hyperlasia, with subsequent up-regulation of p16 and MMP9. Cancer Res. 2005;65(19):8826–35.

    Article  PubMed  CAS  Google Scholar 

  • T1DBase team. 2011. T1D/Base: GABBR1. Retrieved January 3, 2012, URL: http://t1dbase.org/page/Overview/display/gene_id/54393

  • Tam JS, Murray HG. Nasopharyngeal carcinoma and Epstein-Barr virus–associated serologic markers. Ear Nose Throat J. 1990;69(4):261–7.

    PubMed  CAS  Google Scholar 

  • Tao Y, Song X, et al. Nuclear translocation of EGF receptor regulated by Epstein-Barr virus encoded latent membrane protein 1. Sci China C Life Sci. 2004;47(3):258–67.

    PubMed  CAS  Google Scholar 

  • Tedeschi R, Bloigu A, et al. Activation of maternal Epstein-Barr virus infection and risk of acute leukemia in the offspring. Am J Epidemiol. 2007;165(2):134–7.

    Article  PubMed  Google Scholar 

  • Thomas DC, Conti DV, et al. Use of pathway information in molecular epidemiology. Hum Genomics. 2009a;4(1):21–42.

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Jacobs KB, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009b;41(5):579–84.

    Article  PubMed  CAS  Google Scholar 

  • Tiwawech D, Srivatanakul P, et al. The p53 codon 72 polymorphism in Thai nasopharyngeal carcinoma. Cancer Lett. 2003;198(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  • Tiwawech D, Srivatanakul P, et al. Glutathione S-transferase M1 gene polymorphism in Thai nasopharyngeal carcinoma. Asian Pac J Cancer Prev. 2005;6(3):270–5.

    PubMed  Google Scholar 

  • Tiwawech D, Srivatanakul P, et al. Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma. Cancer Lett. 2006;241(1):135–41.

    Article  PubMed  CAS  Google Scholar 

  • Tsai MH, Chen WC, et al. Correlation of p21 gene codon 31 polymorphism and TNF-alpha gene polymorphism with nasopharyngeal carcinoma. J Clin Lab Anal. 2002a;16(3):146–50.

    Article  PubMed  CAS  Google Scholar 

  • Tsai MH, Lin CD, et al. Prognostic significance of the proline form of p53 codon 72 polymorphism in nasopharyngeal carcinoma. Laryngoscope. 2002b;112(1):116–19.

    Article  PubMed  CAS  Google Scholar 

  • Tse KP, Su WH, et al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am J Hum Genet. 2009;85(2):194–203.

    Article  PubMed  CAS  Google Scholar 

  • Vrzalova Z, Hruba Z, et al. Chimeric CYP21A1P/CYP21A2 genes identified in Czech patients with congenital adrenal hyperplasia. Eur J Med Genet. 2010;54(2):112–17.

    Article  PubMed  Google Scholar 

  • Wang T, Hu K, et al. Polymorphism of VEGF-2578C/A associated with the risk and aggressiveness of nasopharyngeal carcinoma in a Chinese population. Mol Biol Rep. 2009a;37(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Liu H, et al. Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2009b;28:160.

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Xiao X, et al. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer. 2010a;10:617.

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Menashe I, et al. Variations in chromosomes 9 and 6p21.3 with risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2010b;20(1):42–9.

    Article  PubMed  Google Scholar 

  • Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem. 2011;52:145–67.

    Article  CAS  Google Scholar 

  • Watt FM, Estrach S, et al. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol. 2008;20(2):171–9.

    Article  PubMed  CAS  Google Scholar 

  • Wei YS, Kuang XH, et al. Interleukin-10 gene promoter polymorphisms and the risk of nasopharyngeal carcinoma. Tissue Antigens. 2007a;70(1):12–7.

    Article  PubMed  CAS  Google Scholar 

  • Wei YS, Lan Y, et al. Single nucleotide polymorphism and haplotype association of the interleukin-8 gene with nasopharyngeal carcinoma. Clin Immunol. 2007b;125(3):309–17.

    Article  PubMed  CAS  Google Scholar 

  • Wei YS, Zhu YH, et al. Association of transforming growth factor-beta1 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma. Clin Chim Acta. 2007c;380(1–2):165–9.

    Article  PubMed  CAS  Google Scholar 

  • Wei KR, Yu YL, et al. Epidemiological trends of nasopharyngeal carcinoma in China. Asian Pac J Cancer Prev. 2010a;11(1):29–32.

    PubMed  Google Scholar 

  • Wei YS, Lan Y, et al. Association of the interleukin-2 polymorphisms with interleukin-2 serum levels and risk of nasopharyngeal carcinoma. DNA Cell Biol. 2010b;29(7):363–8.

    Article  PubMed  CAS  Google Scholar 

  • Wu CC, Liu MT, et al. Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res. 2009;38(6):1932–49.

    Article  PubMed  CAS  Google Scholar 

  • Xiao M, Qi F, et al. Functional polymorphism of cytotoxic T-lymphocyte antigen 4 and nasopharyngeal carcinoma susceptibility in a Chinese population. Int J Immunogenet. 2009;37(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  • Xiao M, Zhang L, et al. Genetic polymorphisms of MDM2 and TP53 genes are associated with risk of nasopharyngeal carcinoma in a Chinese population. BMC Cancer. 2010;10:147.

    Article  PubMed  CAS  Google Scholar 

  • Xiong A, Clarke-Katzenberg RH, et al. Epstein-Barr virus latent membrane protein 1 activates nuclear factor-kappa B in human endothelial cells and inhibits apoptosis. Transplantation. 2004;78(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  • Xu YF, Liu WL, et al. Sequencing of DC-SIGN promoter indicates an association between promoter variation and risk of nasopharyngeal carcinoma in cantonese. BMC Med Genet. 2010;11:161.

    Article  PubMed  CAS  Google Scholar 

  • Yang CS, Yoo JS, et al. Cytochrome P450IIE1: roles in nitrosamine metabolism and mechanisms of regulation. Drug Metab Rev. 1990;22(2–3):147–59.

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH, Du B, et al. Genetic polymorphisms of the DNA repair gene and risk of nasopharyngeal carcinoma. DNA Cell Biol. 2007;26(7):491–6.

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH, Liang WB, et al. The xeroderma pigmentosum group C gene polymorphisms and genetic susceptibility of nasopharyngeal carcinoma. Acta Oncol. 2008;47(3):379–84.

    Article  PubMed  CAS  Google Scholar 

  • Yang ZH, Dai Q, et al. Association of ERCC1 polymorphisms and susceptibility to nasopharyngeal carcinoma. Mol Carcinog. 2009;48(3):196–201.

    Article  PubMed  CAS  Google Scholar 

  • Yi F, Saha A, et al. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities. Virology. 2009;388(2):236–47.

    Article  PubMed  CAS  Google Scholar 

  • Yung WC, Ng MH, et al. p53 codon 72 polymorphism in nasopharyngeal carcinoma. Cancer Genet Cytogenet. 1997;93(2):181–2.

    Article  PubMed  CAS  Google Scholar 

  • Zeng YX, Jia WH. Familial nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):443–50.

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Li LL, et al. Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol. 2007a;4(3):185–96.

    PubMed  CAS  Google Scholar 

  • Zheng MZ, Qin HD, et al. Haplotype of gene Nedd4 binding protein 2 associated with sporadic nasopharyngeal carcinoma in the Southern Chinese population. J Transl Med. 2007b;5:36.

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Zhang C, et al. Functional NBS1 polymorphism is associated with occurrence and advanced disease status of nasopharyngeal carcinoma. Mol Carcinog. 2011;50(9):689–96.

    Article  PubMed  CAS  Google Scholar 

  • Zhou XX, Jia WH, et al. Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk. Cancer Epidemiol Biomarkers Prev. 2006;15(5):862–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Xu Y, et al. Association of IL-1B gene polymorphisms with nasopharyngeal carcinoma in a Chinese population. Clin Oncol (R Coll Radiol). 2008;20(3):207–11.

    Article  Google Scholar 

  • Zhuo X, Cai L, et al. GSTM1 and GSTT1 polymorphisms and nasopharyngeal cancer risk: an evidence-based meta-analysis. J Exp Clin Cancer Res. 2009a;28:46.

    Article  PubMed  CAS  Google Scholar 

  • Zhuo XL, Cai L, et al. TP53 codon 72 polymorphism contributes to nasopharyngeal cancer susceptibility: a meta-analysis. Arch Med Res. 2009b;40(4):299–305.

    Article  PubMed  CAS  Google Scholar 

  • Zollino M, Gurrieri F, et al. Integrated analysis of clinical signs and literature data for the diagnosis and therapy of a previously undescribed 6p21.3 deletion syndrome. Eur J Hum Genet. 2010;19(2):239–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Author Affiliations: The Fisher Center for Familial Cancer Research, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA (Timothy J. Jorgensen); Unit of Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD 20852, USA (Yin Yao Shugart). Cancer Epidemiology Program, Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD 21205, USA (Timothy J. Jorgensen).

The views expressed in this presentation do not necessarily represent the views of the NIMH, NIH, HHS, or the United States Government.

Conflicts of Interest: None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Jorgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jorgensen, T.J., Qin, HD., Shugart, Y.Y. (2012). From Family Study to Population Study: A History of Genetic Mapping for Nasopharyngeal Carcinoma (NPC). In: Shugart, Y. (eds) Applied Computational Genomics. Translational Bioinformatics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5558-1_4

Download citation

Publish with us

Policies and ethics