Skip to main content

Abstract

An overview of preparatory work aiming at the identification of the low-lying 7.6 eV isomer in 229Th through a measurement of its hyperfine structure is presented. A 233U recoil gas cell has been developed and has undergone several iterations in order to improve the efficiency of extracting a low-energy beam of 229Th+ ions. Spectroscopic studies on stable 232Th have been carried out to establish an efficient laser ionization scheme. The latter will be applied in connection with the gas cell in order to improve the extraction efficiency by accessing the neutral atomic fraction. In addition to that of the 229Th ground state, the hyperfine structure of the isomer can then be determined either by collinear laser spectroscopy on the extracted and accelerated ions or by direct in-source/in-jet high-resolution Resonance Ionization Spectroscopy (RIS). The first experiments using high-resolution RIS have been performed and isotope shifts of 228Th, 229Th and 230Th relative to 232Th were measured on an atomic 7s 2 → 7s7p ground-state transition at 380.42 nm. A template of the ground-state hyperfine structure of 229Th has been established for a 261.24nm UV transition. This is an important step towards identification of the isomeric state

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.R. Beck, J.A. Becker, P. Beiersdorfer, G.V. Brown, K.J. Moody, J.B. Wilhelmy, F.S. Porter, C.A. Kilbourne, R.L. Kelley, Phys. Rev. Lett. 98, 142501 (2007).

    Article  ADS  Google Scholar 

  2. A.M. Dykhne, E.V. Tkalya, JETP Lett. 67, 549 (1998).

    Article  ADS  Google Scholar 

  3. E.V. Tkalya, Phys. Rev. Lett. 106, 162501 (2011).

    Article  ADS  Google Scholar 

  4. E. Peik, Chr. Tamm, Europhys. Lett. 61, 181 (2003).

    Article  ADS  Google Scholar 

  5. E. Litvinova, H. Feldmeier, J. Dobaczewski, V. Flambaum, Phys. Rev. C 79, 064303 (2009).

    Article  ADS  Google Scholar 

  6. V. Flambaum, R. Wiringa, Phys. Rev. C 79, 034302 (2009).

    Article  ADS  Google Scholar 

  7. E.V. Tkalya, Phys. Usp. 46, 315 (2003).

    Article  ADS  Google Scholar 

  8. I. Izosimov, J. Nucl. Sci. Technol. Suppl. 6, 1 (2008).

    Google Scholar 

  9. B. Tordoff, J. Billowes, P. Campbell, B. Cheal, D.H. Forest, T. Kessler, J. Lee, I.D. Moore, A. Popov, G. Tungate, Hyperfine Interact. 171, 197 (2007).

    Article  ADS  Google Scholar 

  10. P. Dendooven, Nucl. Instrum. Methods B 126, 182 (1997).

    Article  ADS  Google Scholar 

  11. J. Äystö, Nucl. Phys. A 693, 477 (2001).

    Article  ADS  Google Scholar 

  12. P. Karvonen, I.D. Moore, T. Sonoda, T. Kessler, H. Penttilä, K. Peräjärvi, P. Ronkanen, J. Äystö, Nucl. Instrum. Methods Phys. Res. B 266, 4794 (2008).

    Article  ADS  Google Scholar 

  13. V.S. Kolhinen, S. Kopecky, T. Eronen, U. Hager, J. Hakala, J. Huikari, A. Jokinen, A. Nieminen, S. Rinta-Antila, J. Szerypo, J. Äystö, Nucl. Instrum. Methods A 528, 776 (2004).

    Article  ADS  Google Scholar 

  14. A. Nieminen, J. Huikari, A. Jokinen, J. Äystö, P. Campbell, E.C.A. Cochrane, Nucl. Instrum. Methods Phys. Res. A 469, 244 (2001).

    Article  ADS  Google Scholar 

  15. Y.A. Akovali, Nucl. Data Sheets 58, 555 (1989).

    Article  ADS  Google Scholar 

  16. Yu. Kudryavtsev, T.E. Cocolios, J. Gentens, M. Huyse, O. Ivanov, D. Pauwels, T. Sonoda, P. Van den Bergh, P. Van Duppen, Nucl. Instrum. Methods Phys. Res. B 267, 2908 (2009).

    Google Scholar 

  17. B. Tordoff, Development of Resonance Ionization Techniques at the Jyväskylä IGISOL, Ph.D. thesis, University of Manchester (2007).

    Google Scholar 

  18. B. Tordoff, T. Eronen, V.V. Elomaa, S. Gulick, U. Hager, P. Karvonen, T. Kessler, J. Lee, I. Moore, A. Popov, S. Rahaman, T. Sonoda, Nucl. Instrum. Methods B 252, 347 (2006).

    Article  ADS  Google Scholar 

  19. M. Wada et al., Nucl. Instrum. Methods B 204, 570 (2003).

    Article  ADS  Google Scholar 

  20. C. Geppert, Nucl. Instrum. Methods B 266, 4354 (2008).

    Article  ADS  Google Scholar 

  21. S. Raeder, V. Sonnenschein, T. Gottwald, I. Moore, M. Reponen, S. Rothe, N. Trautmann, K. Wendt, J. Phys. B: At. Mol. Opt. Phys. 44, 165005 (2011).

    Article  ADS  Google Scholar 

  22. T. Billen, K. Schneider, T. Kirsten, A. Mangini, A. Eisenhauer, Appl. Phys. B 57, 109 (1993).

    Google Scholar 

  23. S.G. Johnson, B.L. Fearey, Spectrochim. Acta B 48, 1065 (1993).

    Google Scholar 

  24. S. Köhler, R. Deißenberger, K. Eberhardt, N. Erdmann, G. Herrmann, G. Huber, J.V. Kratz, M. Nunnemann, G. Passler, P.M. Rao, J. Riegel, N. Trautmann, K. Wendt, Spectrochim. Acta B 52, 717 (1997)

    Google Scholar 

  25. J. Blaise, J.-F. Wyart, Tables Internationales de Constantes, in Selected Constants, Energy Levels and Atomic Spectra Vol. 20 (Université P. et M. Curie, Paris, 1992).

    Google Scholar 

  26. R.L. Kurucz, Atomic spectral line database CD-ROM 23 (1995) available at http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html.

  27. B. Cheal, K. Baczynska, J. Billowes, P. Campbell, F.C. Charlwood, T. Eronen, D.H. Forest, A. Jokinen, T. Kessler, I.D. Moore, M. Reponen, S. Rothe, M. Rüffer, A. Saastamoinen, G. Tungate, J. Äystö, Phys. Rev. Lett. 102, 222501 (2009).

    Article  ADS  Google Scholar 

  28. T. Kessler, H. Tomita, C. Mattolat, S. Raeder, K. Wendt, Laser Phys. 18, 1 (2008).

    Article  Google Scholar 

  29. R. Engleman, B.A. Palmer, J. Opt. Soc. Am. 78, 694 (1983).

    Article  ADS  Google Scholar 

  30. W.H. King, Isotope Shifts in Atomic Spectra (Plenum Publishing Co., N.Y., 1984).

    Book  Google Scholar 

  31. W. Kaelber, J. Rink, K. Beck, W. Faubel, S. Goring, G. Meisel, H. Rebel, R.C. Thompson, Z. Phys. A 334, 103 (1989).

    Google Scholar 

  32. M.B.G. Casimir, On the Interaction between Atomic Nuclei and Electrons (W.H. Freeman, 1963)

    Google Scholar 

  33. S. Gerstenkorn, P. Luc, J. Verges, D.W. Englekemeir, J.E. Gindler, F.S. Tomkins, J. Phys. France 35, 483 (1974).

    Article  Google Scholar 

  34. C.J. Campbell, A.G. Radnaev, A. Kuzmich, Phys. Rev. Lett. 106, 223001 (2011).

    Article  ADS  Google Scholar 

  35. J.C. Berengut, V.A. Dzuba, V.V. Flambaum, S.G. Porsev, Phys. Rev. Lett. 102, 210801 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sonnenschein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Società Italiana di Fisica / Springer-Verlag

About this chapter

Cite this chapter

Sonnenschein, V., Moore, I.D., Raeder, S., Hakimi, A., Popov, A., Wendt, K. (2012). The search for the existence of 229mTh at IGISOL. In: Äystö, J., Eronen, T., Jokinen, A., Kankainen, A., Moore, I.D., Penttilä, H. (eds) Three decades of research using IGISOL technique at the University of Jyväskylä. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5555-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5555-0_24

  • Received:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5554-3

  • Online ISBN: 978-94-007-5555-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics