Skip to main content

Rate Processes

  • Chapter
  • First Online:
Book cover Materials Science for Structural Geology

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

  • 2660 Accesses

Abstract

We now proceed to some general considerations of processes in material systems. A rate process in any system may be defined as a course of change in the system as a function of time. Very broadly, three types of rate processes may usefully be distinguished; reactions, transport processes, and deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adda Y, Philibert J (1966) La diffusion dans les solides. Press University, Paris, 1285 pp

    Google Scholar 

  • Allègre CJ, Le Mouel JL, Provost A (1982) Scaling rules in rock fracture and possible implications for earthquake prediction. Nature 297:47–49

    Article  Google Scholar 

  • Allnatt AR, Lidiard AB (1993) Atomic transport in solids. Cambridge University Press, Cambridge 572 pp

    Book  Google Scholar 

  • Anderson DE (1981) Diffusion in electrolyte mixtures. In: Kinetics of geochemical processes. Mineral Soc Am, pp 211–260

    Google Scholar 

  • Anderson DE, Graf DL (1976) Multicomponent electrolyte diffusion. Annual Rev Earth Planet Sci 4:95–121

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62

    Google Scholar 

  • Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohzucker durch Saüren. Zeitschrift für physikalische Chemie 4:226–248

    Google Scholar 

  • Atkins PW (1978) Physical chemistry. Oxford University Press, Oxford, 1018 pp

    Google Scholar 

  • Atkins PW (1986) Physical chemistry, 3rd edn. Oxford University Press, Oxford, 857 pp

    Google Scholar 

  • Atkinson A, Taylor RI (1981) The diffusion of 63Ni along grain boundaries in nickel oxide. Phil Mag A43:979–998

    Google Scholar 

  • Bailey JE, Hirsch PB (1962) The recrystallization process in some polycrystalline metals. Proc Roy Soc (London) A267:11–30

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York 764 pp

    Google Scholar 

  • Bernabé Y, Brace WF, Evans B (1982) Permeability, porosity and pore geometry of hot-pressed calcite. Mech Materials 1(173):183

    Google Scholar 

  • Bernadini J, Gas P, Hondros ED, Seah MP (1982) The role of solute segregation in grain boundary diffusion. Proc Roy Soc (London) A379:159–178

    Google Scholar 

  • Berner, R A, 1981, Kinetics of weathering and diagenesis. In: Kinetics in geochemical processes. Min Soc Am 111–134

    Google Scholar 

  • Brace WF (1977) Permeability from resistivity and pore shape. J Geophys Res 82:3343–3349

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci 17:241–251

    Article  Google Scholar 

  • Brace WF (1984) Permeability of crystalline rocks: new in situ measurements. J Geophys Res 89:4327–4330

    Article  Google Scholar 

  • Brace WF, Orange AS, Madden TR (1965) The effect of pressure on the electrical resisitivity of water-saturated crystalline rocks. J Geophys Res 70:5669–5678

    Article  Google Scholar 

  • Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236

    Article  Google Scholar 

  • Brady JB (1975a) Reference frames and diffusion coefficients. Am J Sci 275:954–983

    Article  Google Scholar 

  • Brady JB (1975b) Chemical components and diffusion. Am J Sci 275:1073–1088

    Article  Google Scholar 

  • Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil Trans Roy Soc London Series A 243:299–358

    Article  Google Scholar 

  • Cabrané-Brouty F, Bernadini J (1982) Segregation and diffusion. J de Phys 43 Colloq C6: C6-163–C166-171

    Google Scholar 

  • Cahn RW (1983) Recovery and recrystallization. In: Physical metallurgy, 3rd edn. North-Holland Publ Co, Amsterdam, pp 1595–1671

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford, 510 pp

    Google Scholar 

  • Cashman KV (1990) Textural constraints on the kinetics of crystallization of igneous rocks. Rev Mineral Geochem 24:259–314

    Google Scholar 

  • Chai BHT (1974) Mass transfer of calcite during hydrothermal recrystallization. In: Geochemical transport and kinetics pp 205–218

    Google Scholar 

  • Chapman RE (1981) Geology and water. an introduction to fluid mechanics for geologists. Martinus Nijhoff/Dr W Junk Publishers, The Hague, 228 pp

    Google Scholar 

  • Chelidze TL (1982) Percolation and fracture. Phys Earth Planet Int 28:93–101

    Article  Google Scholar 

  • Christian JW (1965) The theory of transformations in metals and alloys. Pergamon, Oxford 973 pp

    Google Scholar 

  • Christian JW (1975) Transformations in metals and alloys part I : equilibrium and general kinetic theory, 2nd edn. Pergamon Press, Oxford 586 pp

    Google Scholar 

  • Cooper AR (1974) Vector space treatment of multicomponent diffusion. In: Geochemical transport and kinetics. Carnegie Institution of Washington, Washington, pp 15–30

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford, 414 pp

    Google Scholar 

  • Cussler EL (2009) Diffusion—Mass transfer in fluid systems, 3rd edn. Cambridge University Press, Cambridge, 654 pp

    Google Scholar 

  • Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris

    Google Scholar 

  • De Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North Holland, Amsterdam 510 pp

    Google Scholar 

  • Dohmen R, Chakraborty S (2007) Fe-Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Min 34:409–430, errata 597–598

    Google Scholar 

  • Fick A (1855) On liquid diffusion. Phil Mag 10:30–39

    Google Scholar 

  • Fisher GW, Lasaga AC (1981) Irreversible thermodynamics in petrology. In: Lasaga AC, Kirkpatrick RJ (eds) Geochemical processes. Reviews in Mineralogy, vol. 8, pp 171–209

    Google Scholar 

  • Flynn CP (1972) Point defects and diffusion. Clarendon Press, Oxford 826 pp

    Google Scholar 

  • Glasstone S, Laidler KJ, Eyring EH (1941) The theory of rate processes. Mc-Graw Hill, New York 611 pp

    Google Scholar 

  • Gonten D, Whiting RL (1967) Correlations of physical properties of porous media. J Soc Petrol Eng 7:266–272

    Google Scholar 

  • Guillopé M, Poirier J-P (1979) Dynamic recrystallization during creep of single-crystalline halite: an experimental study. J Geophys Res 84:5557–5567

    Article  Google Scholar 

  • Guiraldenq P (1982) Diffusion intergranulaire et largeur des joints de grains. J de Phys 43 Colloq C6:C6-137–C136-145

    Google Scholar 

  • Gupta D (1977) Influence of solute segregation on grain-boundary energy and self-diffusion. Met Trans 84:1431–1438

    Google Scholar 

  • Hartley J, Crank J (1949) Some fundamental definitions and concepts in diffusion processes. Trans Faraday Soc 45:801–818

    Article  Google Scholar 

  • Hobbs BE (1968) Recrystallization of single crystals of quartz. Tectonophysics 6:353–401

    Article  Google Scholar 

  • Hofmann AW, Giletti BJ, Yoder HS, Yund RA eds. (1974) Geochemical transport and kinetics. Conference at Warrenton, Virginia, June 1973, Carnegie Institution of Washington Publ No. 634, 353 pp

    Google Scholar 

  • Hooyman GJ, Holtan H, Mazur P, De Groot SR (1953) Thermodynamics of irreversible processes in rotating systems. Physica 19:1095–1108

    Article  Google Scholar 

  • Howard RE, Lidiard AB (1964) Matter transport in solids. Reports Progress Phys 27:161–240

    Article  Google Scholar 

  • Hubbert MK (1956) Darcy’s law and the field equations of the flow of underground fluids. Trans AIME 207:222–239

    Google Scholar 

  • Kirkaldy JS, Young DJ (1987) Diffusion in the condensed state. The Institute of Metals, London 527 pp

    Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  • Kirkpatrick RJ (1981) Kinetics of crystallization of igneous rocks. In: Kinetics of geochemical processes. Reviews in mineralogy. Min Soc Amer 8:321–398

    Google Scholar 

  • Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43:455–469

    Article  Google Scholar 

  • Lasaga AC (1981) Transition state theory. In: Kinetics of geochemical processes. Reviews in mineralogy, vol. 8, Min Soc Amer 135–169

    Google Scholar 

  • Lasaga AC, Kirkpatrick RJ (1981) Kinetics of geochemical processes. Reviews in mineralogy, vol. 8, Min Soc Amer 398 pp

    Google Scholar 

  • Lasaga AC, Richardson SM, Holland HR (1977) The mathematics of cation diffusion and exchange between silicate minerals during retrograde metamorphism. In: Energetics of geological processes, Springer, New York, pp 353–388

    Google Scholar 

  • Le Claire AD (1976) Diffusion. In: Treatise on solid state chemistry. Reactivity of solids, vol 4. Plenum Press, New York, pp 1–59

    Google Scholar 

  • Lehner F (1990) Thermodynamics of rock deformation by pressure solution. In Deformation processes in minerals, Ceramics and Rocks. Unwin Hyman, London, pp 296–333

    Google Scholar 

  • Lücke K, Stüwe H-P (1971) On the theory of impurity controlled grain boundary motion. Acta Metall 19:1087–1099

    Article  Google Scholar 

  • Lin W (1982) Parametric analysis of the transient method of measuring permeability. J Geophys Res 87:1055–1060

    Google Scholar 

  • Madden TR (1983) Microcrack connectivity in rocks: a renormalization group approach to the critical phenomenon of conduction and failure in crystalline rocks. J Geophys Res 88:585–592

    Article  Google Scholar 

  • Manning JR (1968) Diffusion kinetics for atoms in crystals. Van Nostrand, Princeton 257 pp

    Google Scholar 

  • Manning JR (1974) Diffusion kinetics and mechanisms in simple crystals. In: Geochemical transport and kinetics, vol 634. Carnegie Institute of Washington Publication,Washington, pp 3–13

    Google Scholar 

  • Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C (2008) First-principles calculation of self-diffusion coefficients. Phys Rev Lett 100:5901–5904

    Google Scholar 

  • Mantina M, Wang Y, Chen LQ, Liu ZK, Wolverton C (2009) First principles impurity diffusion coefficients. Acta Mater 57:4102–4108

    Article  Google Scholar 

  • Martin G, Perraillon B (1980) Measurements of grain boundary diffusion. In Grain boundary structure and kinetics. 1979 ASM materials science seminar, Milwaukee, Metals Park, Ohio, Am Soc for Metals, pp 239–295

    Google Scholar 

  • Mehrer H (2007) Diffusion in solids: fundamentals methods materials, diffusion-controlled processes. Springer, New York, 654 pp

    Google Scholar 

  • Miyamoto M, Takeda H (1983) Atomic diffusion coefficients calculated for transition metals in olivine. Nature 303:602–603

    Article  Google Scholar 

  • Onsager L (1945) Theories and problems in liquid diffusion. Ann N Y Acad Sci 46:241–265

    Article  Google Scholar 

  • Paterson MS (1973) Nonhydrostatic thermodynamics and its geologic applications. Rev Geophys Space Phys 11:355–389

    Article  Google Scholar 

  • Paterson MS (1983) The equivalent-channel model for permeability and resistivity in fluid-saturated rock—a re-appraisal. Mech Mater 2:345–352

    Article  Google Scholar 

  • Peterson NL (1980) Grain-boundary diffusion-structural effects, models, and mechanisms. In: Grain-boundary structure and kinetics. 1979 ASM materials science seminar, Milwaukee, Metals Park, Ohio, Am Soc for Metals, pp 209–237

    Google Scholar 

  • Peterson NL (1983) Grain-boundary diffusion in metals. Int Met Rev 28:65–91

    Article  Google Scholar 

  • Philibert J (1991) Atom movements, diffusion and mass transport in solids, English edition: (trans: Rothman SJ). EDP Sciences, 580 pp

    Google Scholar 

  • Poirier J-P (1985) Creep of crystals. High-temperature deformation processes in metals, ceramics and minerals. Cambridge Univ Press, New York 260 pp

    Book  Google Scholar 

  • Renard F, Schmittbuhl J, Gratier J-P, Meakin P, Merino E (2004) Three-dimensional roughness of stylolites in limestones. J Geophys Res 109(B03209):002512. doi: 03210.01029/02003JB002555

    Google Scholar 

  • Rumer R, (1969) Resistance to flow through porous media. In: Flow through porous media, Academic Press, New York, pp 91–108

    Google Scholar 

  • Rutter EH (1983) Pressure solution in nature, theory and experiment. J Geol Soc London 140:725–740

    Article  Google Scholar 

  • Sakai T (1989) Dynamic recrystallization of metallic materials. In: Rheology of solids and of the earth, Oxford University Press, Oxford, pp 284–307

    Google Scholar 

  • Scheidegger AE (1960) The physics of flow through porous media, 2nd edn. University of Toronto Press, Toronto, 313 pp

    Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High-temperature flow and dynamic recrystallization in Carrara marble. Tectonophysics 65:245–280

    Article  Google Scholar 

  • Shewman PG (1963) Diffusion in solids. McGraw Hill, New York 203 pp

    Google Scholar 

  • Shewman P (1989) Diffusion in solids, vol 2. TMS Publications, 246 pp

    Google Scholar 

  • Shimizu I (1998) Stress and temperature dependence of recrystallized grain size: a subgrain misorientation model. Geophys Res Lett 25:4237–4240

    Article  Google Scholar 

  • Shimizu I (1999) A stochastic model of grain size distribution during dynamic recrystallization. Phil Mag A 79:1217–1231

    Article  Google Scholar 

  • Sullivan RR, Hertel KL (1942) The permeability method for determining specific surface of fibers and powders. In: Advances in colloid science, vol 1. Interscience Publishers, New York, pp 37–80

    Google Scholar 

  • Thompson J (1962) On crystallization and liquefaction. As influenced by stresses tending to change of form in the crystals, Proc Roy Soc (London) A11:473–481

    Google Scholar 

  • von Engelhardt W (1960) Der Porenraum der Sedimente, Springer, 207 pp

    Google Scholar 

  • Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geoph Res 79(4003):4010

    Google Scholar 

  • Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci 18:429–435

    Article  Google Scholar 

  • Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253:307–327

    Article  Google Scholar 

  • Wilkinson DS (2000) Mass transport in solids and fuids. Cambridge University Press, Cambridge 292 pp

    Google Scholar 

  • Yan MF, Cannon RM, Bowen HK, Coble RL (1977) Space-charge contribution to grain-boundary diffusion. J Am Ceram Soc 60:120–127

    Article  Google Scholar 

  • Zhang M-X, Kelly PM (2009) Crystallographic features of phase transformations in solids. Prog Mater Sci 54:1101–1170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervyn S. Paterson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paterson, M.S. (2013). Rate Processes. In: Materials Science for Structural Geology. Springer Geochemistry/Mineralogy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5545-1_3

Download citation

Publish with us

Policies and ethics