Skip to main content

The Nature of Minerals and Rocks as Materials

  • Chapter
  • First Online:
  • 2708 Accesses

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

Abstract

Minerals show a wide range in physical and chemical properties, and rocks have the additional complexity of the textural and structural variety of polycrystalline materials. However, there are some generalizations that can be made. Thus, most minerals are electrically insulating, optically transparent in thin sections, and brittle under ordinary atmospheric conditions, and many are silicates in chemical constitution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler D (1975) The imperfect solid: transport properties. In: Hannay NB (ed) Treatise on solid state chemistry. Plenum Press, New York, pp 237–332

    Google Scholar 

  • Ashby MF, Spalpen F, Williams S (1978) The structure of grain boundaries described as a packing of polyhedra. Acta Metall 26:1647–1663

    Article  Google Scholar 

  • Atkins PW (1986) Physical chemistry, 3rd edn. Oxford University Press, Oxford, 857 pp

    Google Scholar 

  • Balluffi RW (1979) Grain boundary structure and segregation. In: Johnson WC, Blakely SM (eds) Interfacial segregation. American Society for Metals, Metals Park, Ohio, pp 193–236

    Google Scholar 

  • Balluffi RW, Bristowe PD, Sun CP (1981) Structure of high-angle grain boundaries in metals and ceramic oxides. J Am Ceram Soc 64:23–34

    Article  Google Scholar 

  • Barrett CR, Nix WD, Tetelman AS (1973) The principles of engineering materials. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Bender B, Williams DB, Notis M (1980) Investigation of grain-boundary segregation in ceramic oxides by analytical electron microscopy. J Am Ceram Soc 63:542–546

    Article  Google Scholar 

  • Best MG (2003) Igneous and metamorphic petrology, 2nd edn. Oxford Publishers, Malden, 729 pp

    Google Scholar 

  • Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, Berlin 254 pp

    Google Scholar 

  • Bollmann W (1982) Crystal lattices, interfaces, matrices: an extension of crystallography. W Bollmann, Geneva 360 pp

    Google Scholar 

  • Bragg WL, Claringbull GF (1965) Crystal structures of minerals. George Bell and Sons Ltd, London 409 pp

    Google Scholar 

  • Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamic constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6108

    Article  Google Scholar 

  • Cahn JW (1982) Transitions and phase equilibria among grain boundary structures. J de Phys, 43, Colloq. C6, C6-199 to C196-212

    Google Scholar 

  • Cai W-p (1991) A new kinetic model for non-equilibrium grain boundary segregation. J Phys: Condens Matter 3:609–612

    Article  Google Scholar 

  • Catlow CRA, Stoneham AM (1983) Ionicity in solids. J Phys C: Solid State Phys 16:4321–4338

    Article  Google Scholar 

  • Chadwick GA, Smith DA (eds) (1976) Grain boundary structure and properties. Academic Press, London 388 pp

    Google Scholar 

  • Christian JW (1975) Transformations in metals and alloys. Part I equilibrium and general kinetic theory, 2nd edn. Pergamon Press, Oxford 586 pp

    Google Scholar 

  • Clarke DR (1987) Grain boundaries in polycrystalline ceramics. Ann Rev Mater Sci 17:57–74

    Article  Google Scholar 

  • Clemm PJ, Fisher JC (1955) The influence of grain boundaries on the nucleation of secondary phases. Acta Metall 3:70–73

    Article  Google Scholar 

  • Cooper RF, Kohlstedt DL (1982) Interfacial energies in the olivine-basalt system. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. D Riedel Publishing Company, Dordrecht, pp 217–228

    Google Scholar 

  • Coulson CA (1961) Valence, 2nd edn. Oxford University Press, London, 404 pp

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman, London 696 pp

    Google Scholar 

  • Dobson DP, Alfredson M, Holzapfel C, Brodholt JP (2007) Grain-boundary enrichment of iron on magnesium silicate perovskite. Eur J Min 19:617–622

    Article  Google Scholar 

  • Doherty RD, Hughes DA, Humphries FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Current issues in recrystallization: a review. Mater Sci Eng A238:215–274

    Google Scholar 

  • Drury MR, Pennock GM (2007) Subgrain rotation recrystallization in minerals. Mater Sci Forum 550:95–104

    Article  Google Scholar 

  • Farkas D (2000) Atonistic theory and computer simulation of grain boundary structure and diffusion. J Phys: Condens Matter 12:R497–R516

    Article  Google Scholar 

  • Farver JR, Yund RA (1995) Interphase boundary diffusion of oxygen and potassium in K-feldspar/quartz aggregates. Geochim Cosmochim Acta 59:3697–3705

    Article  Google Scholar 

  • Fine ME (1975) Introduction to chemical and structural defects in crystalline solids. In: Hannay NB (ed) Treatise on solid state chemistry, vol 1. The chemical structure of solids. Plenum Press, New York, pp 283–333

    Google Scholar 

  • Flewitt PEJ, Wild RK (eds) (2001) Grain boundaries: their microstructure and chemistry. John Wiley Ltd, Chichester 338 pp

    Google Scholar 

  • Flynn CP (1972) Point defects and diffusion. Clarendon Press, Oxford 826 pp

    Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya IV (2004) Atomic defects and crystal structure of minerals (trans: Furstenko RV). Yanis Publishers, St Petersburg, 187 pp

    Google Scholar 

  • Friedel G (1926) Lecons de Cristallographie, 2nd edn. Blanchard, Paris

    Google Scholar 

  • Friedel J (1964) Dislocations. Pergamon Press, Oxford 491 pp

    Google Scholar 

  • Gleiter H (1979) Recent developments in the understanding of the structure and properties of grain boundaries in metals. Kristall und Technik 14:269–284

    Article  Google Scholar 

  • Guinier A (1938) Structure of age-hardened aluminium-copper alloys. Nature 142:569–570

    Article  Google Scholar 

  • Guo YY, Kuo CK, Nicholson PS (1999) The ionicity of binary oxides and silicates. Solid State Ionics 123:225–231

    Article  Google Scholar 

  • Guttmann M (1977) Grain boundary segregation, two dimensional compound formation, and precipitation. Metall Trans 8A:1383–1401

    Google Scholar 

  • Guyot P, Simon JP (1976) Symmetrical high-angle tilt boundary energy calculation in aluminium and lithium. Phys Stat Sol (a) 38, 207–216

    Google Scholar 

  • Hahn W, Gleiter H (1981) On the structure of vacancies in grain boundaries. Acta Metall 29:601–606

    Article  Google Scholar 

  • Hall EL (1982) Application of the analytical electron microscope to the study of grain boundary chemistry. J de Phys, 43, Colloq C6, C6-239 to C236-250

    Google Scholar 

  • Hammond C (2001) The basics of crystallography and diffraction, 2nd edn. Oxford University Press, Oxford, 331 pp

    Google Scholar 

  • Harrison WA (1980) Electronic structure and the properties of solids. W H Freeman, San Francisco 582 pp

    Google Scholar 

  • Harrison RJ, Bruggeman GA, Bishop GH (1976) Grain boundary structure and properties. In: Chadwick GA, Smith DA (eds) Academic Press, London, pp 45–91

    Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427:699–703

    Article  Google Scholar 

  • Hirth JP, Balluffi RW (1973) On grain boundary dislocations and ledges. Acta Metall 21:929–942

    Article  Google Scholar 

  • Hondros ED (1976) Grain boundary segregation: assessment of investigative techniques. In: McLean D (ed) Grain boundary structure and properties. Academic Press, London pp 265–299

    Google Scholar 

  • Hondros ED, Seah MP (1977) The theory of grain boundary segregation in terms of surface adsorption analogues. Met Trans A 8A:1363–1371

    Article  Google Scholar 

  • Hübner K, Leonhardt G (1975) Ionicity and electrical conductivity in transition-metal oxides. Phys Stat Sol (b) 68, K175–K179

    Google Scholar 

  • Johnson WC (1977) Grain boundary segregation in ceramics. Metall Trans 8A:1413–1422

    Google Scholar 

  • Johnson WC, Blakely JM (eds) (1979) Interfacial segregation. American Society for Metals, Metals Park, Ohio, 440 pp

    Google Scholar 

  • Johnson CL, Hütch MJ, Buseck PR (2004) Nanoscale waviness of low-angle grain boundaries. Proc Nat Acad Sci USA 101:17936–17939

    Article  Google Scholar 

  • Karki BB, Kumar R (2007) Computer simulation of grain boundary structures in minerals. ICCES 3:35–41

    Google Scholar 

  • Keller LM, Hauzenberger CA, Abart R (2007) Diffusion along interphase boundaries and its effect on retrograde zoning patterns of metamorphic minerals. Contr Mineral Petrol 154:205–216

    Article  Google Scholar 

  • Kelly A, Groves GW, Kidd P (2000) Crystallography and crystal defects. Wiley, Chichester, Revised, 470 pp

    Google Scholar 

  • Kingery WD (1974) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I. Grain-boundary characteristics, structure and electrostatic potential. II. Solute segregation, grain-boundary diffusion and general discussion. J Am Ceram Soc 57:74–83

    Article  Google Scholar 

  • Kingery WD, Mitamura T, van der Sande JB, Hall EL (1979) Boundary segregation of Ca, Fe, La and Si in magnesium oxide. J Mater Sci 14 Letters, 1766–1767

    Google Scholar 

  • Kirfel A, Krane H-G, Blaha P, Schwartz K, Lippmann T (2001) Electron-density distribution in Stishovite, SiO2: a new high-energy synchrotron-radiation study. Acta Cryst A57:663–677

    Google Scholar 

  • Kittel C (1976) Introduction to solid state physics, 5th edn. Wiley, New York 608 pp

    Google Scholar 

  • Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken, 704 pp

    Google Scholar 

  • Kowalczyk SP, Ley L, McFeely FR, Shirley DA (1974) An ionicity scale based on X-ray photoemission valence-band spectra of ANB10–N type crystals. J Chem Phys 61:2850–2856

    Article  Google Scholar 

  • Kröger FA (1974) The chemistry of imperfect crystals, vol 2, 2nd edn. Imperfection chemistry of crystalline solids. North-Holland, Amsterdam, 988 pp

    Google Scholar 

  • Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. Trans Met Soc AIME 185:501–514

    Google Scholar 

  • Kuntcheva BT, Kruhl JH, Kunze K (2006) Crystallographic orientations of high-angle boundaries in dynamically recrystallized quartz: first results. Tectonophysics 421:331–346

    Article  Google Scholar 

  • Levine BF (1973a) d-electron effects on bond susceptibilities and ionicities. Phys Rev B7:2591–2600

    Google Scholar 

  • Levine BF (1973b) Bond susceptibilites and ionicities in complex crystal structure. J Chem Phys 59:1463–1486

    Article  Google Scholar 

  • Libowitz GG (1975) Defect equilibria in solids. In: Hannay B (ed) Treatise in solid state chemistry, vol 1. The chemical structure of solids. Plenum Press, New York, pp 335–385

    Google Scholar 

  • Madelung O (1978) Introduction to solid-state theory (trans: Taylor BC). Springer, Berlin, 486 pp

    Google Scholar 

  • Marfunin AS (1979) Physics of minerals and inorganic materials (trans: Egorova NG, Mischenko AG). Springer, Berlin, 340 pp

    Google Scholar 

  • Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge 624 pp

    Book  Google Scholar 

  • Massalski TB (1983) Structure of solid solutions. In: Cahn RW (ed) Physical metallurgy. North-Holland Physic Pub., Amsterdam, pp 159–184

    Google Scholar 

  • McLean D (1957) Grain boundaries in metals. Oxford University Press, London 346 pp

    Google Scholar 

  • Mishin Y, Farkas D (1998) Atomistic simulation of [001] symmetrical tilt grain boundaries in NiAl. Phil Mag A 78:29–56

    Google Scholar 

  • Mrowec S (1980) Defects and diffusion in solids. An introduction (trans: Marcinkiewicz S), Elsevier Amsterdam, (also PWN: Warsaw), 466 pp

    Google Scholar 

  • Mueller RF, Saxena SK (1977) Chemical petrology. Springer, New York 394 pp

    Book  Google Scholar 

  • Nabarro FRN (1967) Theory of crystal dislocations. Clarendon Press (also Dover, New York, 1987), Oxford, 821 pp

    Google Scholar 

  • Nesse WD (2000) Introduction to mineralogy. Oxford University Press, Oxford 442 pp

    Google Scholar 

  • O’Keeffe M, Hyde BG (1985) An alternative approach to non-molecular crystal structures, with emphasis on the arrangement of cations. Struct Bond 61:77–144

    Article  Google Scholar 

  • O’Keeffe M, Hyde BG (1996) Crystal structures. Mineralogical Society of America, Washington

    Google Scholar 

  • Olgaard DL, Rodriguez Rey A, and David C (eds) (1999) Imaging, analysing and modelling pore structure in geomaterials. Phys Chem Earth, Part A: Solid Earth and Geodesy 24, 551–644

    Google Scholar 

  • Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell UP, Ithaca 644 pp

    Google Scholar 

  • Pauling L (1971) Discussion on the chemical bond. Phys Today 24(February):9–13

    Google Scholar 

  • Pauling L (1980) The nature of silicon-oxygen bonds. Am Min 65:321–323

    Google Scholar 

  • Perkins D (2002) Mineralogy, 2nd edn. Prentice-Hall Inc., New Jersey, 483 pp

    Google Scholar 

  • Phillips JC (1968) Dielectric definition of electronegativity. Phys Rev Lett 20:550–553

    Article  Google Scholar 

  • Phillips JC (1969) Covalent bonding in crystals, molecules, and polymers. University of Chicago Press, Chicago 267

    Google Scholar 

  • Phillips JC (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317–356

    Article  Google Scholar 

  • Phillips JC (1973) Bonds and bands in semiconductors. Academic Press, New York

    Google Scholar 

  • Phillips JC (1975) Chemical bonds in solids. In: Hannay NB (ed) Treatise in solid state chemistry, vol 1: the chemical structure of solids. Plenum Press, New York, pp 1–41

    Google Scholar 

  • Philpotts AR, Ague JJ (2009) Principles of igneous and metamorphic petrology, 2nd edn. Cambridge University Press, Cambridge, 686 pp

    Google Scholar 

  • Pond RC, Smith DA, Vitek V (1979) Computer simulation of <110> tilt boundaries: structure and symmetry. Acta Metall 27:235–241

    Article  Google Scholar 

  • Preston GD (1938) Structure of age-hardened aluminium-coper alloys. Nature 142:570

    Article  Google Scholar 

  • Priester L (1980) Approche géométrique des joints de grains. Intérêt et limite, Revue Phys Appl 15:789–830

    Article  Google Scholar 

  • Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge 457 pp

    Book  Google Scholar 

  • Raj R (1981) Morphology and stability of the glass phase in glass-ceramic systems. J Am Ceram Soc 64:245–248

    Article  Google Scholar 

  • Raj R, Lange FF (1981) Crystallization of small quantities of glass segregated in grain boundaries in ceramics. Acta Metall 29:1993–2000

    Article  Google Scholar 

  • Ramakrishnan TV (1974) Ionicity and covalence in crystals. In: Rao, CNR (ed) Solid state chemistry. Marcel Decker, New York, pp 187–214

    Google Scholar 

  • Redfern SAT, Artioli G, Rinaldi R, Henderson CMB, Knight KS, Wood BJ (2000) Octahedral cation ordering in olivine at high temperature. II: an in situ neutron powder diffraction study on synthetic Mg FeSiO4(Fa50). Phys Chem Min 27:630–637

    Article  Google Scholar 

  • Ricoult DL, Kohlstedt DL (1983) Structural width of low-angle grain boundaries in olivine. Phys Chem Miner 9:133–138

    Article  Google Scholar 

  • Rohrer GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, Cambridge 548 pp

    Book  Google Scholar 

  • Rosenberg M, Martino F, Reed WA, Eisenberger P (1978) Compton-profile studies of amorphous and single crystal SiO2. Phys Rev B18:844–850

    Google Scholar 

  • Samsonov GV (ed) (1968) Handbook of the physicochemical properties of the elements (trans: from Russian). Plenum Press, New York, pp 941

    Google Scholar 

  • Sands DE (1969) Introduction to crystallography. Dover Publications, 165 pp

    Google Scholar 

  • Schmalzried H (1981) Solid state reactions, 2nd edn. VCH, Weinheim, 254 pp

    Google Scholar 

  • Schmalzried H (1995) Chemical kinetics of solids. VCH, Weinheim, 422 pp

    Google Scholar 

  • Seah MP, Hondros ED (1973) Grain boundary segregation. Proc Roy Soc (London) A335:191–212

    Google Scholar 

  • Smith CS (1948) Grains, phases and interfaces: an interpretation of microstucture. Trans AIME 175:15–51

    Google Scholar 

  • Smith CS (1952) Grain shapes and other metallurgical applications of topology. In: Metal interfaces. 1961 ASM seminar. American Society for Metals, Metals Park, Ohio, pp 65–108

    Google Scholar 

  • Smith DA, Pond RC (1976) Bollman’s O-lattice theory: a geometrical approach to interface structure. Int Met Rev 21:61–74

    Article  Google Scholar 

  • Smyth DM (2000) The defect chemistry of metal oxides. Oxford University Press, Oxford 304 pp

    Google Scholar 

  • Stewart RF (1976) Electron population analysis with rigid pseudoatoms. Acta cryst A32:565–574

    Google Scholar 

  • Stewart RF, Whitehead MA, Donnay G (1980) The ionicity of the Si-O bond in low-quartz. Am Min 65:324–326

    Google Scholar 

  • Stocker RL (1978a) Influence of oxygen pressure on defect concentrations in olivine with fixed cationic ratio. Phys Earth Planet Int 17:118–129

    Article  Google Scholar 

  • Stocker RL (1978b) Point defect formation parameters in olivine. Phys Earth Planet Int 17:108–117

    Article  Google Scholar 

  • Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press, New York 819 pp

    Google Scholar 

  • Tiku SK, Kröger FA (1980) Effects of space charge, grain boundary segregation, and mobility differences between grain boundary and bulk on the conductivity of polycrystaliine Al2O3. J Am Ceram Soc 63:183–189

    Article  Google Scholar 

  • Tilley RJD (1986) Defect crystal chemistry and its applications. Kluwer Academic Publishers, Dordrecht, 256 pp

    Google Scholar 

  • Tilley RJD (1998) Principles and applications of chemical defects. Taylor and Francis, London, 320 pp

    Google Scholar 

  • Tilley RJD (2008) Defects in solids. Wiley-Interscience, New York, 529 pp

    Google Scholar 

  • Tossell JA (1977) A comparison of silicon-oxygen bonding in quartz and magnesian olivine from X-ray spectra and molecular orbital calculations. Am Min 62:136–141

    Google Scholar 

  • Unertl WN, de Jonghe LC, Tu YY (1977) Auger spectroscopy of grain boundaries in calcium-doped sodium beta-alumina. J Mater Sci 12:739–742

    Article  Google Scholar 

  • van Gool W (1966) Principles of defect chemistry of crystalline solids. Academic Press, New York 148 pp

    Google Scholar 

  • van Vechten JA (1969a) Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys Rev 182:891–905

    Article  Google Scholar 

  • van Vechten JA (1969b) Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Phys Rev 187:1007–1020

    Article  Google Scholar 

  • Vaughan PJ, Kohlstedt DL (1982) Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: an electron microscope study. Contr Mineral Petrol 81:253–261

    Article  Google Scholar 

  • Vernon RH, Clarke GL (2008) Principles of metamorphic petrology. Cambridge University Press, Cambridge 460 pp

    Google Scholar 

  • Vitek V, Wang GJ (1982) Atomic structure of grain boundaries and intergranular segregation. J de Phys, 43, Colloq C6, C6-147 to C146-160

    Google Scholar 

  • Waff HS, Bulau JS (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J Geophys Res 84:6109–6114

    Article  Google Scholar 

  • Waff HS, Faul UH (1992) Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts. J Geophys Res 97:9003–9014

    Article  Google Scholar 

  • Warrington DH (1980) Formal geometrical aspects of grain boundary structure. In: Grain-boundary structure and kinetics. 1979 ASM materials science seminar. American Society for Metals, Metals Park, Milwaukee, Ohio pp 1–12

    Google Scholar 

  • Weaire D (ed) (1975) Energy bands. In: Treatise on solid state chemistry, vol 1: the chemical structure of solids. Plenum Press, New York, pp 43–114

    Google Scholar 

  • Wenk H-R, Bulakh A (2004) Minerals. Their constitution and origin. Cambridge University Press, Cambridge 646 pp

    Google Scholar 

  • Westbrook JH (1969) Solute segregation at interfaces. In: Gifkins RC (ed) Interfaces: proceedings of the international conference, Melbourne, Butterworths, London, pp 283–305

    Google Scholar 

  • Wigner E, Seitz F (1933) On the constitution of metallic sodium. Phys Rev 43:804–810

    Article  Google Scholar 

  • Wirth R (1986) High-angle grain boundaries in sheet silicates (biotite/chlorite): a TEM study. J Mater Sci Lett 5:105–106

    Article  Google Scholar 

  • Wray PJ (1976) The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angle. Acta Metall 24:125–135

    Article  Google Scholar 

  • Xu T (1987) Non-equilibrium grain-boundary segregation kinetics. J Mater Sci 22:337–345

    Article  Google Scholar 

  • Yan MF, Cannon RM, Bowen HK (1983) Space charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces. J Appl Phys 54:764–778

    Article  Google Scholar 

  • Yardley BWD (1989) An Introduction to metamorphic petrology. Longman Scientific and Technical, Harlow, Essex

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervyn S. Paterson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paterson, M.S. (2013). The Nature of Minerals and Rocks as Materials. In: Materials Science for Structural Geology. Springer Geochemistry/Mineralogy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5545-1_1

Download citation

Publish with us

Policies and ethics