Skip to main content

Abstract

It is now well-established that viruses are the most abundant biological entities on Earth and are estimated to harbor the second greatest biomass after prokaryotes, equivalent to the amount of carbon found in ~75 million blue whales (the largest organism on Earth) Suttle (Nature 437(7057):356–361, 2005). College textbooks commonly quote a global estimate of 1030–1031 individual phages Acheson (Fundamentals of molecular virology. Wiley, p 5 2007); Flint et al. (Principles of virology v.1 molecular biology. ASM Washington, DC, p 4, 2009), and investigations have reported a range between 106 and 109 viruses per milliliter in samples taken from various aquatic habitats Fuhrman (Nature 399(6736):541–548, 1999); Wommack and Colwell (Microbiol Mol Biol Rev 64(1):69–114, 2000); Jiang et al. (Microb Ecol 47(1):9–17, 2004); Suttle (Nature 437(7057):356–361, 2005); Baxter et al. (Haloviruses of Great Salt Lake: a model for understanding viral diversity. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments: current research and future trends. Springer, New York. p 173–190, 2011); Sime-Ngando et al. (Environ Microbiol 13(8):1956–1972, 2011). While the scientific literature indicates that over 5,500 phages have been described Ackermann (Arch Virol 152(2):227–243, 2007), much of the scientific community has focused attention on the relatively fewer pathogenic viruses of humans, animals, and agricultural crops. Nonetheless, phages (previously bacteriophages) have played an essential role in basic biological research, even becoming the basis for establishing the field of molecular genetics Summers (Basic phage research and major scientific discoveries associated with bacteriophages. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC, New York, p 12–23, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheson NH (2007) Fundamentals of molecular virology. Wiley, p 5

    Google Scholar 

  • Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152(2):227–243

    CAS  PubMed  Google Scholar 

  • Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6(7):263–268

    CAS  PubMed  Google Scholar 

  • Angly FE, Willner D, Prieto-Davo A, Edwards RA, Schmieder R, Vega-Thurber R, Antonopoulos DA, Barott K, Cottrell MT, Desnues C, Dinsdale EA, Furlan M, Haynes M, Henn MR, Hu Y, Kirchman DL, McDole T, McPherson JD, Meyer F, Miller RM, Mundt E, Naviaux RK, Rodriguez-Mueller B, Stevens R, Wegley L, Zhang L, Zhu B, Rohwer F (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 5(12):e1000593

    PubMed  PubMed Central  Google Scholar 

  • Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM (2012) Global network of specific virus-host interactions in hypersaline environments. Environ Microbiol 14(2):426–440

    CAS  PubMed  Google Scholar 

  • Bamford DH, Ravantti JJ, Ronnholm G, Laurinavicius S, Kukkaro P, Dyall-Smith M, Somerharju P, Kalkkinen N, Bamford JK (2005) Constituents of SH1, a novel lipid-containing virus infecting the halophilic euryarchaeon Haloarcula hispanica. J Virol 79(14):9097–9107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baranyi U, Klein R, Lubitz W, Kruger DH, Witte A (2000) The archaeal halophilic virus-encoded Dam-like methyltransferase M. phiCh1-I methylates adenine residues and complements dam mutants in the low salt environment of Escherichia coli. Mol Microbiol 35(5):1168–1179

    CAS  PubMed  Google Scholar 

  • Bath C, Dyall-Smith ML (1998) His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica. J Virol 72(11):9392–9395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bath C, Cukalac T, Porter K, Dyall-Smith ML (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350(1):228–239

    CAS  PubMed  Google Scholar 

  • Baxter BK, Mangalea MRM, Willcox S, Sabet S, Nagoulat MN, Griffith JD (2011) Haloviruses of Great Salt Lake: a model for understanding viral diversity. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments: current research and future trends. Springer, New York, pp 173–190

    Google Scholar 

  • Bettarel Y, Desnues A, and Rochelle-Newall E (2010) Lytic failure in cross-inoculation assays between phages and prokaryotes from three aquatic sites of contrasting salinity. FEMS Microbiol Lett 311(2):113–118

    CAS  PubMed  Google Scholar 

  • Bettarel Y, Bouvier T, Bouvier C, Carre C, Desnues A, Domaizon I, Jacquet S, Robin A, Sime-Ngando T (2011) Ecological traits of planktonic viruses and prokaryotes along a full-salinity gradient. FEMS Microbiol Ecol 76(2):360–372

    CAS  PubMed  Google Scholar 

  • Brum JR, Steward GF (2010) Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake. Microb Ecol 60(3):636–643

    PubMed  Google Scholar 

  • Calvo C, de la Paz AG, Bejar V, Quesada E, Ramos-Cormenzana A (1988) Isolation and characterization of phage F9-11 from a lysogenic deleya halophila strain. Curr Microbiol 17:49–53

    CAS  Google Scholar 

  • Clokie MRJ, Kropinski AM (eds) (2009) Bacteriophages: methods and protocols v.501 and 502. Springer Protocols Methods in Molecular Biology, Humana

    Google Scholar 

  • Cotterill S, Kearsey S (2009) Eukaryotic DNA polymerases. in eLS (http://www.els.net). Wiley, Chichester, pp 1–6

  • Daniels LL, Wais AC (1984) Restriction and modification of halophage S45 in halobacterium. Curr Microbiol 10(3):133–136 

    CAS  Google Scholar 

  • Daniels LL, Wais AC (1990) Ecophysiology of bacteriophage S5100 infecting halobacterium cutirubrum. Appl Environ Microbiol 56(11):3605–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels LL, Wais AC (1998) Virulence in phage populations infecting Halobacterium cutirubrum. FEMS Microbiol Ecol 25(2):129–134

    CAS  Google Scholar 

  • Diez B, Anton J, Guixa-Boixereu N, Pedros-Alio C, Rodriguez-Valera F (2000) Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int Microbiol 3(3):159–164

    CAS  PubMed  Google Scholar 

  • Dyall-Smith M (2009) The halohandbook: protocols for haloarchaeal genetics v.7.1. http://www.haloarchaea.com/resources/halohandbook/, p 79

  • Filee J, Chandler M (2010) Gene exchange and the origin of giant viruses. Intervirology 53(5):354–361

    CAS  PubMed  Google Scholar 

  • Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2009) Principles of virology v.1 molecular biology. ASM Washington, DC, p 4

    Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Research 117(1):5–16

    CAS  PubMed  Google Scholar 

  • Forterre P, Prangishvili D (2009) The origin of viruses. Res Microbiol 160(7):466–472

    CAS  PubMed  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399(6736):541–548

    CAS  PubMed  Google Scholar 

  • Goel U, Kauri T, Ackerman H-W, Kushner DJ (1996) A moderately halophilic Vibrio from a Spanish saltern and its lytic bacteriophage. Can J Microbiol 42:1015–1023

    CAS  Google Scholar 

  • Gonzalez JM, Suttle CA (1993) Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10

    Google Scholar 

  • Gropp F, Palm P, Zillig W (1989) Expression and regulation of Halobacterium halobium phage ϕH genes. Can J Microbiol 35(1):182–188

    CAS  PubMed  Google Scholar 

  • Gropp F, Grampp B, Stolt P, Palm P, Zillig W (1992) The immunity-conferring plasmid p ϕHL from the Halobacterium salinarium phage ϕH: nucleotide sequence and transcription. Virology 190(1):45–54

    CAS  PubMed  Google Scholar 

  • Guixa-Boixareu N, Calderon-Paz JI, Heldal M, Bratbak G, Pedros-Alio C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aqua Microb Ecol 11(3):215–227

    Google Scholar 

  • Iro M, Klein R, Galos B, Baranyi U, Rossler N, Witte A (2007) The lysogenic region of virus ϕCh1: identification of a repressor-operator system and determination of its activity in halophilic Archaea. Extremophiles 11(2):383–396

    CAS  PubMed  Google Scholar 

  • Jaalinoja HT, Roine E, Laurinmaki P, Kivela HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci U S A 105(23):8008–8013

    CAS  PubMed  Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64(8):2780–2787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Steward G, Jellison R, Chu W, Choi S (2004) Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47(1):9–17

    CAS  PubMed  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2(3):191–200

    CAS  PubMed  Google Scholar 

  • Kauri T, Ackerman H-W, Goel U, Kushner DJ (1991) A bacteriophage of a moderately halophilic bacterium. Arch Microbiol 156:435–438

    CAS  Google Scholar 

  • Kirchman DL (ed) (2000) Microbial ecology of the oceans. Wiley series in ecological and applied microbiology. Wiley, New York

    Google Scholar 

  • Kivela HM, Roine E, Kukkaro P, Laurinavicius S, Somerharju P, Bamford DH (2006) Quantitative dissociation of archaeal virus SH1 reveals distinct capsid proteins and a lipid core. Virology 356(1–2):4–11

    PubMed  Google Scholar 

  • Klein R, Greineder B, Baranyi U, Witte A (2000) The structural protein E of the archaeal virus ϕCh1: evidence for processing in Natrialba magadii during virus maturation. Virology 276(2):376–387

    CAS  PubMed  Google Scholar 

  • Klein R, Baranyi U, Rossler N, Greineder B, Scholz H, Witte A (2002) Natrialba magadii virus ϕCh1: first complete nucleotide sequence and functional organization of a virus infecting a haloalkaliphilic archaeon. Mol Microbiol 45(3):851–863

    CAS  PubMed  Google Scholar 

  • Klein R, Rossler N, Iro M, Scholz H, Witte A (2012) Haloarchaeal myovirus ϕCh1 harbors a phase variation system for the production of protein variants with distinct cell surface adhesion specificities. Mol Microbiol 83(1):137–150

    CAS  PubMed  Google Scholar 

  • Koonin E, Senkevich T, Dolja V (2006) The ancient virus world and evolution of cells. Biology Direct 1:29

    PubMed  PubMed Central  Google Scholar 

  • Krupovic M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397(1):144–160

    CAS  PubMed  Google Scholar 

  • Kukkaro P, Bamford DH (2009) Virus-host interactions in environments with a wide range of ionic strengths. Environ Microbiol Rep 1(1):71–77

    CAS  PubMed  Google Scholar 

  • Lipton HL (1980) Persistent Theiler’s murine encephalomyelitis virus infection in mice depends on plaque size. J Gen Virol 46(1):169–177

    CAS  PubMed  Google Scholar 

  • Maloy SR, John E, Cronan J, Freifelder D (1994) Microbial genetics. Jones and Bartlett, Massachusetts, p 95

    Google Scholar 

  • Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424(6950):741

    CAS  PubMed  Google Scholar 

  • Mei Y, Chen J, Sun D, Chen D, Yang Y, Shen P, Chen X (2007) Induction and preliminary characterization of a novel halophage SNJ1 from lysogenic Natrinema sp. F5. Can J Microbiol 53(9):1106–1110

    CAS  PubMed  Google Scholar 

  • Middelboe M (2000) Bacterial growth rate and marine virus-host dynamics. Microb Ecol 40(2):114–124

    CAS  PubMed  Google Scholar 

  • Middelboe M, Hagstrom A, Blackburn N, Sinn B, Fischer U, Borch NH, Pinhassi J, Simu K, Lorenz MG (2001) Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microb Ecol 42(3):395–406

    CAS  PubMed  Google Scholar 

  • Nuttall SD, Dyall-Smith ML (1993) HF1 and HF2: novel bacteriophages of halophilic archaea. Virology 197(2):678–684

    CAS  PubMed  Google Scholar 

  • Nuttall SD, Dyall-Smith ML (1995) Halophage HF2: genome organization and replication strategy. J Virol 69(4):2322–2327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1(3):143–149

    CAS  PubMed  Google Scholar 

  • Pauling C (1982) Bacteriophages of Halobacterium halobium: isolated from fermented fish sauce and primary characterization. Can J Microbiol 28(8):916–921

    CAS  PubMed  Google Scholar 

  • Pagaling E, Haigh RD, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2007) Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China. BMC Genomics 8:410

    PubMed  PubMed Central  Google Scholar 

  • Pietila MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72(2):307–319

    CAS  PubMed  Google Scholar 

  • Porter K, Kukkaro P, Bamford JK, Bath C, Kivela HM, Dyall-Smith ML, Bamford DH (2005) SH1: A novel, spherical halovirus isolated from an Australian hypersaline lake. Virology 335(1):22–33

    CAS  PubMed  Google Scholar 

  • Porter K, Dyall-Smith M (2006) The isolation and study of viruses of halophilic microorganisms. In: Rainey FA, Oren A (eds) Extremophiles. Elsevier, pp 681–702

    Google Scholar 

  • Porter K, Russ BE, Dyall-Smith ML (2007) Virus-host interactions in salt lakes. Curr Opin Microbiol 10(4):418–424

    CAS  PubMed  Google Scholar 

  • Porter K, Dyall-Smith M L (2008) Transfection of haloarchaea by the DNAs of spindle and round haloviruses and the use of transposon mutagenesis to identify non-essential regions. Mol Microbiol 70(5):1236–1245

    CAS  PubMed  Google Scholar 

  • Porter K, Russ BE, Yang J, Dyall-Smith ML (2008) The transcription programme of the protein-primed halovirus SH1. Microbiology 154(Pt 11):3599–3608

    CAS  PubMed  Google Scholar 

  • Prangishvili D, Garrett RA (2005) Viruses of hyperthermophilic Crenarchaea. Trends Microbiol 13(11):535–542

    CAS  PubMed  Google Scholar 

  • Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4(11):837–848

    CAS  PubMed  Google Scholar 

  • Ramsingh AI, Caggana M, Ronstrom S (1995) Genetic mapping of the determinants of plaque morphology of coxsackievirus B4. Arch Virol 140(12):2215–2226

    CAS  PubMed  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4(6):739–751

    PubMed  Google Scholar 

  • Roine E, Kukkaro P, Paulin L, Laurinavicius S, Domanska A, Somerharju P, Bamford DH (2010) New, closely related haloarchaeal viral elements with different nucleic Acid types. J Virol 84(7):3682–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossler N, Klein R, Scholz H, Witte A (2004) Inversion within the haloalkaliphilic virus ϕCh1 DNA results in differential expression of structural proteins. Mol Microbiol 52(2):413–426

    CAS  PubMed  Google Scholar 

  • Santos F, Meyerdierks A, Pena A, Rossello-Mora R, Amann R, Anton J (2007) Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9(7):1711–1723

    CAS  PubMed  Google Scholar 

  • Santos F, Yarza P, Parro V, Briones C, Anton J (2010) The metavirome of a hypersaline environment. Environ Microbiol 12(11):2965–2976

    CAS  PubMed  Google Scholar 

  • Santos F, Moreno-Paz M, Meseguer I, Lopez C, Rossello-Mora R, Parro V, Anton J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5(10):1621–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schloer GM, Hanson RP (1968) Relationship of plaque size and virulence for chickens of 14 representative Newcastle disease virus strains. J Virol 2(1):40–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabel H, Zillig W, Pfaffle M, Schnabel R, Michel H, Delius H (1982a) Halobacterium halobium phage ϕH. The EMBO J 1(1):87–92

    CAS  PubMed  Google Scholar 

  • Schnabel H, Schramm E, Schnabel R, Zillig W (1982b) Structural variability in the genome of phage ϕH of Halobacterium halobium. Mol Gen Genet 188(3):370–377

    CAS  Google Scholar 

  • Schnabel H, Zillig W (1984) Circular structure of the genome of phage ϕH in a lysogenic Halobacterium halobium. Mol Gen Genet 193(3):422–426

    CAS  Google Scholar 

  • Sime-Ngando T, Lucas S, Robin A, Tucker KP, Colombet J, Bettarel Y, Desmond E, Gribaldo S, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13(8):1956–1972

    Google Scholar 

  • Stedman KM, Porter K, Dyall-Smith M (2010) The isolation of viruses infecting Archaea. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology. American Society for Limnology and Oceanography (ASLO), pp 57–64

    Google Scholar 

  • Stolt P, Zillig W (1993) In vivo and in vitro analysis of transcription of the L region from the Halobacterium salinarium phage ϕH: definition of a repressor-enhancing gene. Virology 195(2):649–658

    CAS  PubMed  Google Scholar 

  • Stolt P, Zillig W (1994) Transcription of the halophage ϕH repressor gene is abolished by transcription from an inversely oriented lytic promoter. FEBS Lett 344(2–3):125–128

    CAS  PubMed  Google Scholar 

  • Stolt P, Grampp B, Zillig W (1994) Genes for DNA cytosine methyltransferases and structural proteins, expressed during lytic growth by the phage ϕH of the archaebacterium Halobacterium salinarium. Biol Chem Hoppe Seyler 375(11):747–757

    CAS  PubMed  Google Scholar 

  • Summers WC (2005) Basic phage research and major scientific discoveries associated with bacteriophages. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC, New York, pp 12–23

    Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437(7057):356–361

    CAS  PubMed  Google Scholar 

  • Tang SL, Nuttall S, Ngui K, Fisher C, Lopez P, Dyall-Smith M (2002) HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 44(1):283–296

    CAS  PubMed  Google Scholar 

  • Tang SL, Nuttall S, Dyall-Smith M (2004) Haloviruses HF1 and HF2: evidence for a recent and large recombination event. J Bacteriol 186(9):2810–2817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thingstad T, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aqua Microb Ecol 13(1):19–27

    Google Scholar 

  • Torsvik T, Dundas ID (1974) Bacteriophage of Halobacterium salinarium. Nature 248(450):680–681

    CAS  PubMed  Google Scholar 

  • Torsvik T, Dundas I (1980) Persisting phage infection in Halobacterium salinarium str. 1. J Gen Virol 47(1):29–36

    CAS  Google Scholar 

  • Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10(1):200–207

    CAS  PubMed  Google Scholar 

  • Uchida K, Kanbe C (1993) Occurrence of bacteriophages lytic for pedicoccus halophilus, a halophilic lactic-acid bacterium, in soy sauce fermentation. J Gen Appl Microbiol 39:429–437

    CAS  Google Scholar 

  • van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65(2):795–801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelsang-Wenke H, Oesterhelt D (1988) Isolation of a halobacterial phage with a fully cytosine-methylated genome. Mol Gen Genet 211(3):407–414

    CAS  Google Scholar 

  • Wais AC, Daniels LL (1985) Populations of bacteriophage infecting Halobacterium in a transient brine pool. FEMS Microbiol Ecol 31:323–326

    Google Scholar 

  • Wais AC, Kon M, MacDonald RE, Stollar BD (1975) Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature 256(5515):314–315

    CAS  PubMed  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11

    PubMed  Google Scholar 

  • Wen K, Ortmann AC, Suttle CA (2004) Accurate estimation of viral abundance by epifluorescence microscopy. Appl Environ Microbiol 70(7):3862–3867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SW, Weinbauer MG, Suttle CA (eds) (2010) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco.

    Google Scholar 

  • Witte A, Baranyi U, Klein R, Sulzner M, Luo C, Wanner G, Kruger DH, Lubitz W (1997) Characterization of Natronobacterium magadii phage ϕCh1, a unique archaeal phage containing DNA and RNA. Mol Microbiol 23(3):603–616

    CAS  PubMed  Google Scholar 

  • Wixon J (2001) Featured organism: reductive evolution in bacteria: Buchnera sp., Rickettsia prowazekii and Mycobacterium leprae. Comp Funct Genomics 2(1):44–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64(1):69–114

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shereen Sabet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabet, S. (2012). Halophilic Viruses. In: Vreeland, R.H. (eds) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5539-0_4

Download citation

Publish with us

Policies and ethics