Taxonomy of Halophilic Archaea and Bacteria

  • Antonio VentosaEmail author
  • M. Carmen Márquez
  • Cristina Sánchez-Porro
  • Rafael R. de la Haba


Microorganisms that inhabit hypersaline habitats are designated as halophiles and they are extremophilic organisms that must cope not only with the high ionic composition but also with other environmental factors such as alkaline pH values, low oxygen availability, high or low temperatures, presence of heavy metals and/or other toxic compounds, etc. They are normal inhabitants of natural saline environments such as saline lakes and soils, marine and inland salterns and several other hypersaline habitats. Besides, they are found in a variety of food products and several other saline derived goods. In this chapter we review the taxonomy of Halophilic Arcgaea abd Bacteria as well as the features and criteria which are used for taxonomic characterization. We emphasize those aspects that could be of interest for scientists for the correct characterization of these microorganisms.


Halophilic Archaea Natural Saline Environments Hypersaline Habitats Haloarchaea Extreme Halophiles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research by authors was supported by grants from the Spanish Ministerio de Economía y Competitividad (CGL2010–19303), National Science Foundation (Grant DEB-0919290) and Junta de Andalucía (P10-CVI-6226). FEDER funds also supported their studies.


  1. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–263PubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Google Scholar
  3. Amann RI, Lin C, Key R, Montgomery L, Stahl DA (1992) Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst Appl Microbiol 15:23–31Google Scholar
  4. Arahal DR, Dewhirst FE, Paster BJ, Volcani BE, Ventosa A (1996) Phylogenetic analyses of some extremely halophilic Archaea isolated from Dea Sea water, determined on the basis of their 16S – rRNA sequences. Appl Environ Microbiol 62:3779–3786Google Scholar
  5. Arahal DR, Ludwig W, Schleifer K-H, Ventosa A (2002) Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249PubMedGoogle Scholar
  6. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446PubMedGoogle Scholar
  7. Boone DR, Whitman WB (1988) Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219Google Scholar
  8. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF (2004) Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990PubMedPubMedCentralGoogle Scholar
  9. Brenner DJ, Fanning GR, Rake AV, Johnson KE (1969) Batch procedure for thermal elution of DNA from hydroxyapatite. Anal Biochem 28:447–459PubMedGoogle Scholar
  10. Burns DG, Janssen PH, Itoh T, Kamekura M, Echigo A, Dyall-Smith ML (2010) Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 60:1196–1199PubMedGoogle Scholar
  11. Cho JC, Tiedje JM (2001) Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682PubMedPubMedCentralGoogle Scholar
  12. Clayton RA, Sutton G, Hinkle PS Jr, Bult C, Fields C (1995) Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45:595–599PubMedGoogle Scholar
  13. Coenye T, Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228:45–49PubMedGoogle Scholar
  14. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167PubMedGoogle Scholar
  15. Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martínez-Murcia A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12Google Scholar
  16. Crosa JH, Brenner DJ, Falkow S (1973) Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol 115:904–911PubMedPubMedCentralGoogle Scholar
  17. Cui HL, Gao X, Sun FF, Dong Y, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010a) Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371PubMedGoogle Scholar
  18. Cui HL, Gao X, Yang X, Xu XW (2010b) Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14:493–499PubMedGoogle Scholar
  19. Cui HL, Li XY, Gao X, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010c) Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093PubMedGoogle Scholar
  20. de la Haba RR, Arahal DR, Márquez MC, Ventosa A (2010) Phylogenetic relationships within the family Halomonadaceae based on 23S and 16S rRNA comparative sequence analysis. Int J Syst Evol Microbiol 60:737–748PubMedGoogle Scholar
  21. de la Haba RR, Sánchez-Porro C, Márquez MC, Ventosa A (2011) Taxonomy of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, p 255–308Google Scholar
  22. de la Haba RR, Márquez MC, Papke RT, Ventosa A (2012) Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol 62:520–538PubMedGoogle Scholar
  23. De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754PubMedPubMedCentralGoogle Scholar
  24. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedGoogle Scholar
  25. De Rijk P, Wuyts J, De Wachter R (2003) RnaViz2: an improved representation of RNA secondary structure. Bioinformatics 19:299–300PubMedGoogle Scholar
  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedPubMedCentralGoogle Scholar
  27. Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592PubMedGoogle Scholar
  28. Euzéby JP (2012) Minimal standards for the description of new taxa.
  29. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  30. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791PubMedGoogle Scholar
  31. Felsenstein J (1989) PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5:164–166Google Scholar
  32. Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170PubMedGoogle Scholar
  33. García MT, Ventosa A, Ruiz-Berraquero F, Kocur M (1987) Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37:251–256Google Scholar
  34. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology, 2nd edn. release 5.0. Springer, New York. doi:10.1007/bergeysoutline200405Google Scholar
  35. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739PubMedGoogle Scholar
  36. Gibbons NE (1974) Family V. Halobacteriaceae fam. nov. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, p 269–273Google Scholar
  37. Goodfellow M, Manfio GP, Chun J (1997) Towards a practical species concept for cultivatable bacteria. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, London, p 25–59Google Scholar
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91PubMedGoogle Scholar
  39. Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 1, The Archaea and the deeply branching and phototrophic bacteria. Springer, New York, p 294–301Google Scholar
  40. Grimont PAD, Popoff MY, Grimont F, Coynault C, Lemelin M (1980) Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330Google Scholar
  41. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedGoogle Scholar
  42. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedGoogle Scholar
  43. Imhoff JF, Caumette P (2007) Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 54:1415–1421Google Scholar
  44. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H, Chun J (2005) jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173PubMedGoogle Scholar
  45. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, p 21–132Google Scholar
  46. Kamekura M (1993) Lipids of extreme halophiles. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC, Boca Raton, p 135–161Google Scholar
  47. Kim JM, Jung JY, Chae HB, Park W, Jeon CO (2010) Hwanghaeicola aestuarii gen. nov., sp. nov., a moderately halophilic bacterium isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 60:2877–2881PubMedGoogle Scholar
  48. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721Google Scholar
  49. Kjeldsen KU, Jakobsen TF, Glastrup J, Ingvorsen K (2010) Desulfosalsimonas propionicica gen. nov., sp. nov., a halophilic, sulfate-reducing member of the family Desulfobacteraceae isolated from a salt-lake sediment. Int J Syst Evol Microbiol 60:1060–1065PubMedGoogle Scholar
  50. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333PubMedPubMedCentralGoogle Scholar
  51. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207Google Scholar
  52. Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC, Boca Raton, p 109–138Google Scholar
  53. Lai Q, Yuan J, Gu L, Shao Z (2009) Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 59:1278–1281PubMedGoogle Scholar
  54. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948Google Scholar
  55. Lechevalier MP, De Bièvre C, Lechevalier HP (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260Google Scholar
  56. Logan NA, Berge O, Bishop AH, Busee HJ, De Vos P, Fritze D, Heyndickx M, Kämpfer P, Rabinovitich L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121PubMedGoogle Scholar
  57. Ludwig W, Strunk O, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer K-H (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568PubMedGoogle Scholar
  58. Ludwig W, Schleifer K-H (1999) Phylogeny of bacteria beyond the 16S rRNA standard. ASM News 65:752–757Google Scholar
  59. Ludwig W, Klenk H-P (2001) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 1. Springer, New York, p 49–65Google Scholar
  60. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedPubMedCentralGoogle Scholar
  61. Martínez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 165 rRNA. FEMS Microbiol Lett 70:73–83Google Scholar
  62. Martínez-Murcia AJ, Benlloch S, Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Pleisiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol 42:412–421PubMedGoogle Scholar
  63. Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2008) Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 58:1922–1926PubMedGoogle Scholar
  64. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375PubMedGoogle Scholar
  65. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  66. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedGoogle Scholar
  67. Mesbah NM, Wiegel J (2009) Natronovirga wadinatrunensis gen. nov., sp. nov. and Natranaerobius trueperi sp. nov., halophilic, alkalithermophilic micro-organisms from soda lakes of the Wadi An Natrun, Egypt. Int J Syst Evol Microbiol 59:2042–2048PubMedGoogle Scholar
  68. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R (2010) Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60:2513–2516PubMedGoogle Scholar
  69. Minegishi H, Kamekura M, Kitajima-Ihara T, Nakasone K, Echigo A, Shimane Y, Usami R, Itoh T, Ihara K (2011) Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol 62:188–195PubMedGoogle Scholar
  70. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedGoogle Scholar
  71. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238Google Scholar
  72. Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic, DordrechtGoogle Scholar
  73. Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59:637–642PubMedGoogle Scholar
  74. Papke RT, White E, Reddy P, Weigel G, Kamekura M, Minegishi H, Usami R, Ventosa A (2011) A multilocus sequence analysis approach to the phylogeny and taxonomy of Halobacteriales. Int J Syst Evol Microbiol 61:2984–2995PubMedGoogle Scholar
  75. Peplies J, Kottmann R, Ludwig W, Glöckner F-O (2008) A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 31:251–257PubMedGoogle Scholar
  76. Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595PubMedGoogle Scholar
  77. Quesada E, Ventosa A, Ruiz-Berraquero F, Ramos-Cormenzana A (1984) Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 40:261–267Google Scholar
  78. Rosselló-Mora R (2006) DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Stackebrandt E (ed) Molecular identification, systematics and population structure of prokaryotes. Springer, Berlin, p 23–50Google Scholar
  79. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477PubMedPubMedCentralGoogle Scholar
  80. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156Google Scholar
  81. Schumann P, Kämpfer P, Busee HJ, Evtushenko LI (2009) Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. Int J Syst Evol Microbiol 59:1823–1849PubMedGoogle Scholar
  82. Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A, Miyazaki M, Ohta Y, Usami R, Grant WD, Horikoshi K (2010) Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 60:2529–2534PubMedGoogle Scholar
  83. Shimane Y, Hatada Y, Minegishi H, Echigo A, Nagaoka S, Miyazaki M, Ohta Y, Maruyama T, Usami R, Grant WD, Horikoshi K (2011) Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int J Syst Evol Microbiol 61:2266–2270PubMedGoogle Scholar
  84. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420Google Scholar
  85. Sorokin DY, Kovaleva OL, Tourova TP, Muyzer G (2010) Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammaproteobacterium from hypersaline lakes, that utilizes thiocyanate. Int J Syst Evol Microbiol 60:444–450PubMedGoogle Scholar
  86. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  87. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedGoogle Scholar
  88. Stackebrandt E (2003) The richness of prokaryotic diversity: there must be a species somewhere. Food Technol Biotechnol 41:17–22Google Scholar
  89. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  90. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedPubMedCentralGoogle Scholar
  91. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  92. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599Google Scholar
  93. Tang SK, Wang Y, Zhang H, Lee JC, Lou K, Kim CJ, Li WJ (2010) Haloechinothrix alba gen. nov., sp. nov., a halophilic, filamentous actinomycete of the suborder Pseudonocardineae. Int J Syst Evol Microbiol 60:2154–2158PubMedGoogle Scholar
  94. Tang SK, Zhi XY, Wang Y, Shi R, Lou K, Xu LH, Li WJ (2011) Haloactinopolyspora alba gen. nov., sp. nov., a halophilic filamentous actinomycete isolated from a salt lake, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord. nov. Int J Syst Evol Microbiol 61:194–200PubMedGoogle Scholar
  95. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedPubMedCentralGoogle Scholar
  96. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedPubMedCentralGoogle Scholar
  97. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202Google Scholar
  98. Tindall BJ, Rosselló-Mora R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266PubMedGoogle Scholar
  99. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedPubMedCentralGoogle Scholar
  100. Ventosa A, Quesada E, Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968Google Scholar
  101. Ventosa A (1988) Taxonomy of moderately halophilic heterotrophic eubacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol I, CRC, Boca Raton, p 71–84Google Scholar
  102. Ventosa A (1989) Taxonomy of halophilic bacteria. In: Da Costa MS, Duarte JC, Williams RAD (eds) Microbiology of extreme environments and its potential for biotechnology. Elsevier, London, p 262–279Google Scholar
  103. Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, p 223–253Google Scholar
  104. Vreeland RH (1993) Taxonomy of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC, Boca Raton, p 105–134Google Scholar
  105. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  106. Woese CR, Fox GE, Zablen L, Uchida T, Bonen L, Pechman K, Lewis BJ, Stahl D (1975) Conservation of primary structure in 16s ribosomal RNA. Nature 254:83–86PubMedGoogle Scholar
  107. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  108. Yu Y, Yan S-L, Li H-R, Zhang X-H (2011) Roseicitreum antarcticum gen. nov. sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium from Antarctic sandy intertidal sediments. Int J Syst Evol Microbiol 61:2173–2179PubMedGoogle Scholar
  109. Xin H, Itoh T, Zhou P, Suzuki K-I, Kamekura M, Nakase T (2000) Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50:1297–1303PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Antonio Ventosa
    • 1
    Email author
  • M. Carmen Márquez
    • 1
  • Cristina Sánchez-Porro
    • 1
  • Rafael R. de la Haba
    • 1
  1. 1.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevillaSevillaSpain

Personalised recommendations