Skip to main content

Dynamics at Fluid Solid Interfaces: Porous Media and Colloidal Particles

  • Chapter
  • First Online:
Principles of Soft-Matter Dynamics

Abstract

This chapter could be entitled “molecular motions in complex media” as well. The point is that the systems of interest can be defined by the existence of fluid–solid interfaces. Surface-related phenomena are therefore of central interest. There is an endless list of examples belonging to this category in principle. Emphasis will be laid on porous glasses, fine-particle agglomerates, biopolymer solutions, lipid bilayers, biological tissue, etc. The predominant purpose of this chapter is to elaborate a well-classified scheme of the key mechanisms determining molecular dynamics in the presence of fluid–solid interfaces. This includes adsorption and exchange kinetics, translational and rotational diffusion, and liquid/vapor coexistence phenomena. Effects due to fluid–wall interactions on the one hand and, on the other hand, owing to geometric confinement in mesoscopic pore spaces will thoroughly be discriminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A first application of this process was already mentioned at the end of Sect. 6.8.4 as a mechanism competing with shape fluctuations of lipid vesicles.

  2. 2.

    A short side note: “Exchange” is to refer to molecular exchange if not specified otherwise. Selective exchange of atoms such as hydrogen in water or in hydroxyl groups of other compounds, for example, is usually slower and therefore irrelevant in the present context. For example, hydrogen exchange in water of neutral acidity has an exchange time from molecule to molecule in the order of 10−3 s [20, 21] compared to exchange times of about 10−5 s for molecular exchange between adsorbed and bulk-like water phases. The latter order of magnitude is concluded from the strong frequency dependence of the spin–lattice relaxation time in such systems ranging down to the kHz regime (see Fig. 7.3).

  3. 3.

    Anomalies are however expected on shorter time scales below the ms regime as they are accessible with the fringe-field variant of field-gradient diffusometry. In this case, anomalies have been observed indeed (see Ref. [29]).

  4. 4.

    Trade names of frequently studied, more or less monodisperse silica fine particles are Alfasil and Cab-o-sil with diameters ranging from a few up to several tens of nanometers.

  5. 5.

    Under such conditions, one must make sure that all remaining pore space is actually filled with liquid. Otherwise, a third phase, namely, the vapor of the liquid, can contribute or even dominate. This phenomenon will be discussed in Sect. 7.4.4.

  6. 6.

    Immaterial diffusion of spins by flip-flop spin transitions in the frozen material, the so-called spin diffusion mentioned several times before, can be excluded for deuterons but might be effective for protons in principle. By all means, the influence on the diffusion behavior in the liquid phase will be entirely negligible, owing to the weak coupling between fluid and solid [23, 40].

  7. 7.

    Incidentally, the peculiar thermodynamic properties of interfacial water at low temperatures have found much attention especially in the biopolymer community. The ongoing discussion of this topic is demonstrated by a recent quasi-elastic neutron scattering study reported in Ref. [41] and other references cited therein.

  8. 8.

    Note that – irrespective of the nonfreezing surface layers – the freezing temperature of the bulk-like phase is reduced slightly according to the Gibbs/Thomson relation which predicts a depression proportional to the surface-to-volume ratio of the pores [46]. On this basis, NMR techniques have been suggested for the determination of the pore size and its distribution [47, 48]. With these methods, the freezing temperature is determined by the more or less abrupt change of the NMR linewidth at the phase transition.

  9. 9.

    It should be emphasized that this approach is appropriate for translational diffusion at typical experimental time and length scales. A totally different situation arises for rotational diffusion as probed by spin relaxation to be discussed further down.

  10. 10.

    A detailed analysis of echo formation mechanisms can be found in Ref. [39].

  11. 11.

    Provided that motional averaging is still incomplete, the preferential orientation of adsorbate molecules relative to adsorbent surfaces can be demonstrated by dipolar or quadrupolar splitting of NMR resonance lines [74, 75] or, if such splitting is not resolved, by multiple-quantum filtering spectroscopy which is based on residual dipolar or quadrupolar couplings [76, 77].

  12. 12.

    An analogous (one-dimensional) analysis has been employed above for polymer conformations as illustrated in Fig. 5.22.

  13. 13.

    An analogous strategy has been pursued in the experiments represented by Fig. 5.41 in the context of the corset effect of polymers under mesoscopic confinement.

  14. 14.

    The residual correlation of local motions must not be identified with the residual dipolar or quadrupolar coupling as revealed in NMR spectroscopy [7477]. The time scales can be very different. By tendency, these phenomena are however related with each other. The common basis is the anisotropy of local reorientations.

  15. 15.

    Recall the analogous scenarios treated in the context of polymers (Eq. 5.295) and liquid crystals (Eq. 6.104). The analytical form of a product is a consequence of probability theory. The product implies the joint probability that none of the three independent reorientation processes have yet become effective. In other terms, it is the probability that the orientation correlation is still retained at time \( t \).

  16. 16.

    With the surface diffusion coefficient discussed below, this correlation time limit means root-mean square-surface displacements much less than a few Å. Compare Sect. 7.4.2.1, where translational diffusion in the adsorbed phase has been examined.

  17. 17.

    The analytical structure of Eq. (7.102) can be rationalized as follows: The correlation function effective in the crossover regime is composed of the statistically independent partial correlation functions for tumbling on the one hand and for the longest RMTD mode on the other. That is exp \( \left\{ { - {{t} \left/ {{{{\tau}_{{\rm c}}}}} \right.}} \right\} = \exp \left\{ { - {{t} \left/ {{{{\tau}_{{{\rm tumble}}}}}} \right.}} \right\}\exp \left\{ { - {{t} \left/ {{{{\tau}_{{\rm l}}}}} \right.}} \right\} \) with \( {{\tau}_{{\rm c}}} = {{\left( {\tau_{{\rm tumble}}^{{ - 1}} + \tau_{{\rm l}}^{{ - 1}}} \right)}^{{ - 1}}} \).

  18. 18.

    Note that this value must simultaneously be taken as the upper limit of the exchange time between the adsorbed and bulk-like phases. That is, \( {{\tau}_{{{\rm l}}}} < {{\tau}_{{\rm ex}}} \) as anticipated for slow exchange on the correlation time scale.

  19. 19.

    In Ref. [95], some modification of this law is suggested based on a pulsed photoexcitation study of labeled proteins. For the present treatment, this is however of little relevance.

  20. 20.

    For an explanation of this sort of powder spectrum, see Ref. [39], for instance.

  21. 21.

    A complete expression for the BMSD propagator on planar surfaces has recently been derived in Ref. [19]. This implies the prevalence of a Cauchy distribution at short displacements (as they are relevant in the present case) and a terminating Gaussian decay in the limit of long distances.

References

  1. Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH, Weinheim

    Google Scholar 

  2. Buhai B, Li Y, Kimmich R (2009) In: Codd SL, Seymour JD (eds) Magnetic resonance microscopy. Wiley-VCH, Weinheim, p 197

    Google Scholar 

  3. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  4. Chandrasekhar S (1943) Rev Mod Phys 15:1

    Article  Google Scholar 

  5. Kimmich R, Peters A (1975) J Magn Reson 19:144

    Article  CAS  Google Scholar 

  6. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford

    Google Scholar 

  7. Brownstein KR, Tarr CE (1979) Phys Rev A 19:2446

    Article  Google Scholar 

  8. Lisitza NV, Song Y-Q (2002) Phys Rev B 65:172406

    Article  CAS  Google Scholar 

  9. Callaghan PT, Godefroy S, Ryland BN (2003) J Magn Reson 162:320

    Article  CAS  Google Scholar 

  10. Orbach R (1986) Science 231:814

    Article  CAS  Google Scholar 

  11. Bunde A, Havlin S (eds) (1991) Fractals and disordered systems. Springer, Berlin

    Google Scholar 

  12. Halle B (1991) J Chem Phys 94:3150

    Article  CAS  Google Scholar 

  13. Kuntz ID (1971) J Am Chem Soc 93:514

    Article  CAS  Google Scholar 

  14. Kuntz ID (1974) Adv Protein Chem 28:239

    Article  CAS  Google Scholar 

  15. Topgaard D, Söderman O (2002) Biophys J 83:3596

    Article  CAS  Google Scholar 

  16. Bychuk OV, O’Shaughnessy B (1994) J Phys II 4:1135

    Article  CAS  Google Scholar 

  17. Valiullin R, Kimmich R, Fatkullin NF (1997) Phys Rev E 56:4371

    Article  CAS  Google Scholar 

  18. Chechkin AV, Zaid IM, Lomholt MA, Sokolov IM, Metzler R (2011) J Chem Phys 134:204116

    Article  CAS  Google Scholar 

  19. Chechkin AV, Zaid IM, Lomholt MA, Sokolov IM, Metzler R (2012) arXiv:1205.2243v1 [cond-mat.stat-mech]

  20. Knispel RR, Pintar MM (1975) Chem Phys Lett 32:238

    Article  CAS  Google Scholar 

  21. Graf V, Noack F, Béné GJ (1980) J Chem Phys 72:861

    Article  CAS  Google Scholar 

  22. Stapf S, Kimmich R, Seitter R-O (1995) Phys Rev Lett 75:2855

    Article  CAS  Google Scholar 

  23. Zavada T, Kimmich R (1998) J Chem Phys 109:6929

    Article  CAS  Google Scholar 

  24. Zimmerman R, Brittin WE (1957) J Phys Chem 61:1328

    Article  CAS  Google Scholar 

  25. Godefroy S, Korb J-P, Fleury M, Bryant RG (2001) Phys Rev E 64:021605

    Article  CAS  Google Scholar 

  26. Mattea C, Kimmich R, Ardelean I, Wonorahardjo S, Farrher G (2004) J Chem Phys 121:10648

    Article  CAS  Google Scholar 

  27. Anoardo E, Grinberg F, Vilfan M, Kimmich R (2004) Chem Phys 297:99

    Article  CAS  Google Scholar 

  28. Kimmich R, Stapf S, Maklakov AI, Skirda VD, Khozina EV (1996) Magn Reson Imaging 14:793

    Article  CAS  Google Scholar 

  29. Farrher G, Ardelean I, Kimmich R (2006) J Magn Reson 182:215

    Article  CAS  Google Scholar 

  30. Hofmann T, Wallacher D, Mayorova M, Zorn R, Frick B, Huber P (2012) J Chem Phys 136:124505

    Article  CAS  Google Scholar 

  31. Alba-Simionesco C (2007) Collect SFNC 8:43

    Article  Google Scholar 

  32. Bellissent-Funel M-C, Bradley KF, Chen SH, Lal J, Teixeira J (1993) Phys A 201:277

    Article  CAS  Google Scholar 

  33. Sinha SK, Fretloft T, Kjems J (1984) In: Family F, Landau DP (eds) Kinetics of aggregation and gelation. Elsevier, Amsterdam, p 87

    Google Scholar 

  34. Klammler F, Kimmich R (1992) Croat Chem Acta 65:455

    CAS  Google Scholar 

  35. Kimmich R, Klammler F, Skirda VD, Serebrennikova IA, Maklakov AI, Fatkullin N (1993) Appl Magn Reson 4:425

    Article  CAS  Google Scholar 

  36. Wang JH (1954) J Am Chem Soc 76:4755

    Article  CAS  Google Scholar 

  37. Clark ME, Burnell EE, Chapman NR, Hinke JAM (1982) Biophys J 39:289

    Article  CAS  Google Scholar 

  38. Careri G, Giansanti A, Rupley JA (1986) Proc Natl Acad Sci 83:6810

    Article  CAS  Google Scholar 

  39. Kimmich R (1997) NMR tomography, diffusometry, relaxometry. Springer, Berlin

    Google Scholar 

  40. Weglarz WP, Peemoeller H (1997) J Magn Reson 124:484

    Article  CAS  Google Scholar 

  41. Doster W, Busch S, Gaspar AM, Appavou M-S, Wuttke J, Scheer H (2010) Phys Rev Lett 104:098101

    Article  CAS  Google Scholar 

  42. Kimmich R (2002) Chem Phys 284:253

    Article  CAS  Google Scholar 

  43. Kotischke K, Kimmich R, Rommel R, Parak F (1990) Prog Colloid Polym Sci 83:211

    Article  Google Scholar 

  44. Tarek M, Tobias DJ (2000) Biophys J 79:3244

    Article  CAS  Google Scholar 

  45. Polnaszek CF, Bryant RG (1984) J Chem Phys 81:4038

    Article  CAS  Google Scholar 

  46. Jackson CL, McKenna GB (1990) J Chem Phys 93:9002

    Article  CAS  Google Scholar 

  47. Overloop K, van Gerven L (1993) J Magn Reson A101:179

    Google Scholar 

  48. Strange JH, Rahman M, Smith EG (1993) Phys Rev Lett 71:3589

    Article  CAS  Google Scholar 

  49. Kimmich R, Doster W (1976) J Polym Sci Polym Phys Ed 14:1671

    Article  CAS  Google Scholar 

  50. Mon KK, Percus JK (2002) J Chem Phys 117:2289

    Article  CAS  Google Scholar 

  51. Sané J, Padding JT, Louis AA (2010) Faraday Discuss 144:285

    Article  CAS  Google Scholar 

  52. Hahn K, Kärger J, Kukla V (1996) Phys Rev Lett 76:2762

    Article  CAS  Google Scholar 

  53. Ylihautala M, Jokisaari J, Fischer E, Kimmich R (1998) Phys Rev E 57:6844

    Article  CAS  Google Scholar 

  54. Kärger J, Pfeifer H, Riedel E, Winkler H (1973) J Colloid Interface Sci 44:187

    Article  Google Scholar 

  55. D’Orazio F, Bhattacharja S, Halperin WP, Gerhardt R (1989) Phys Rev Lett 63:43

    Article  Google Scholar 

  56. Kimmich R, Stapf S, Callaghan P, Coy A (1994) Magn Reson Imaging 12:339

    Article  CAS  Google Scholar 

  57. Ardelean I, Mattea C, Farrher G, Wonorahardjo S, Kimmich R (2003) J Chem Phys 119:10358

    Article  CAS  Google Scholar 

  58. Ardelean I, Farrher G, Mattea C, Kimmich R (2004) J Chem Phys 120:9809

    Article  CAS  Google Scholar 

  59. Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  60. Malek K, Coppens MO (2001) Phys Rev Lett 87:125505

    Article  CAS  Google Scholar 

  61. Kärger J (1971) Ann Phys (Leipzig) 27:107

    Google Scholar 

  62. Kärger J, Pfeifer H, Heink W (1988) Adv Magn Reson 12:1

    Google Scholar 

  63. Han M, Youssef S, Rosenberg E, Fleury M, Levitz P (2009) Phys Rev E 79:031127

    Article  CAS  Google Scholar 

  64. O’Orazio F, Bhattacharja S, Halperin WP, Gerhardt R (1990) Phys Rev B 42:6502

    Google Scholar 

  65. Sahimi M (1993) Rev Mod Phys 65:1393

    Article  Google Scholar 

  66. Geier O, Vasenko S, Kärger J (2002) J Chem Phys 117:1935

    Article  CAS  Google Scholar 

  67. Torrey HC (1956) Phys Rev 104:563

    Article  Google Scholar 

  68. Michel D, Pfeifer H (1965) Z Naturforsch A 20a:220

    Google Scholar 

  69. Allen SG, Stephenson PCL, Strange JH (1997) J Chem Phys 106:7802

    Article  CAS  Google Scholar 

  70. Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol II, Part 5, Springer, Berlin/Heidelberg/New York (1969), p 552

    Google Scholar 

  71. Ardelean I, Farrher G, Kimmich R (2007) J Optoelctron Adv Mat 9:655

    CAS  Google Scholar 

  72. Farrher G, Ardelean I, Kimmich R (2007) Diffus Fundam 5:9.1

    Google Scholar 

  73. Klafter J, Shlesinger MF, Zumofen G (1996) Phys Today 49:33

    Article  Google Scholar 

  74. Migchelsen C, Berendsen HJC (1973) J Chem Phys 59:296

    Article  CAS  Google Scholar 

  75. Berendsen HJC (1975) In: Franks F (ed) Water: a comprehensive treatise, vol 5. Plenum Publishing Corporation, New York, p 293

    Google Scholar 

  76. Eliav U, Navon G (1999) J Magn Reson 137:295

    Article  CAS  Google Scholar 

  77. Navon G, Shinar H, Eliav U, Seo Y (2001) NMR Biomed 14:112

    Article  CAS  Google Scholar 

  78. Stapf S, Kimmich R, Niess J (1994) J Appl Phys 75:529

    Article  CAS  Google Scholar 

  79. Stapf S, Kimmich R (1995) J Chem Phys 103:2247

    Article  CAS  Google Scholar 

  80. Zavada T, Kimmich R (1999) J Chem Phys 59:5848

    CAS  Google Scholar 

  81. Arfken GB, Weber HJ (1995) Mathematical methods for physicists. Academic, San Diego

    Google Scholar 

  82. Edzes HT, Samulski ET (1978) J Magn Reson 31:207

    Article  CAS  Google Scholar 

  83. Otting G, Liepinsh E, Wüthrich K (1991) Science 245:974

    Article  Google Scholar 

  84. Bryant RG (1996) Annu Rev Biophys Biomol Struct 25:29

    Article  CAS  Google Scholar 

  85. Venu K, Denisov VP, Halle B (1997) J Am Chem Soc 119:3122

    Article  CAS  Google Scholar 

  86. Nusser W, Kimmich R (1990) J Phys Chem 94:5637

    Article  CAS  Google Scholar 

  87. Kimmich R, Nusser W, Gneiting T (1990) Colloids Surf 45:283

    Article  CAS  Google Scholar 

  88. Kimmich R, Winter F, Nusser W, Spohn K-H (1986) J Magn Reson 68:263

    Article  CAS  Google Scholar 

  89. Nusser W, Kimmich R, Winter F (1988) J Phys Chem 92:6808

    Article  CAS  Google Scholar 

  90. Korb J-P, Bryant RG (2001) J Chem Phys 115:10964

    Article  CAS  Google Scholar 

  91. Korb J-P, Bryant RG (2005) Biophys J 89:2685

    Article  CAS  Google Scholar 

  92. Cohen MH, Turnbull D (1959) J Chem Phys 31:1164

    Article  CAS  Google Scholar 

  93. Macedo PR, Litowitz TA (1965) J Chem Phys 42:245

    Article  CAS  Google Scholar 

  94. Kumins CA, Kwei TK (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic, London, p 107

    Google Scholar 

  95. Lavalette D, Tétreau C, Tourbez M, Blouquit Y (1999) Biophys J 76:2744

    Article  CAS  Google Scholar 

  96. Kimmich R (1990) Makromol Chem Macromol Symp 34:237

    Article  CAS  Google Scholar 

  97. Koenig SH, Brown RD III, Adams D, Emerson D, Harrison DG (1984) Inv Radiol 19:76

    Article  CAS  Google Scholar 

  98. Fischer HW, von Haverbeke Y, Rinck PA, Schmitz-Feuerhake I, Muller RN (1989) Magn Reson Med 9:315

    Article  CAS  Google Scholar 

  99. Kimmich R, Nusser W, Winter F (1984) Phys Med Biol 29:593

    Article  CAS  Google Scholar 

  100. Levitz P, Grebenkov DS, Zinsmeister M, Kolwankar KM, Sapoval B (2006) Phys Rev Lett 96:180601

    Article  CAS  Google Scholar 

  101. Tardieu A, Luzzati V, Reman FC (1973) J Mol Biol 75:711

    Article  CAS  Google Scholar 

  102. Janiak MJ, Small DM, Shipley GG (1979) J Biol Chem 254:6068

    CAS  Google Scholar 

  103. Seitter R-O, Zavada T, Kimmich R, Kobelkov A, Wolfangel P, Müller K (2000) J Chem Phys 112:8715

    Article  CAS  Google Scholar 

  104. Kimmich R, Anoardo E (2004) Prog NMR Spectrosc 44:257

    Article  CAS  Google Scholar 

  105. Zasadzinski JAN, Schneir J, Gurley J, Elings V, Hansma PK (1988) Science 239:1013

    Article  CAS  Google Scholar 

  106. Grandjean J, Robert J-L (1997) J Colloid Interface Sci 187:267

    Article  CAS  Google Scholar 

  107. Grandjean J (1998) Langmuir 14:1037

    Article  CAS  Google Scholar 

  108. Zavada T, Kimmich R, Grandjean J, Kobelkov A (1999) J Chem Phys 110:6977

    Article  CAS  Google Scholar 

  109. Levitz PE (2003) Magn Reson Imaging 21:177

    Article  CAS  Google Scholar 

  110. Mattea C, Kimmich R (2005) Phys Rev Lett 94:024502

    Article  CAS  Google Scholar 

  111. Taylor GI (1953) Proc R Soc Lond Ser A 219:186

    Article  CAS  Google Scholar 

  112. Aris R (1956) Proc R Soc Lond Ser A 235:67

    Article  Google Scholar 

  113. Mattea C, Tiraboschi H, Kimmich R (2005) Phys Rev E 72:021602

    Article  CAS  Google Scholar 

  114. Léger L (2003) J Phys Condens Matter 15:S19

    Article  Google Scholar 

  115. Korb J-P, Whaley-Hodges M, Bryant RG (1997) Phys Rev E 56:1934

    Article  CAS  Google Scholar 

  116. Korb J-P, Whaley Hodges M, Gobron T, Bryant RG (1999) Phys Rev E 60:3097

    Article  CAS  Google Scholar 

  117. Keating K, Knight R (2007) Geophysics 72:E27

    Article  Google Scholar 

  118. McDonald PJ, Korb J-P, Mitchell J, Monteilhet L (2005) Phys Rev E 72:011409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kimmich, R. (2012). Dynamics at Fluid Solid Interfaces: Porous Media and Colloidal Particles. In: Principles of Soft-Matter Dynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5536-9_7

Download citation

Publish with us

Policies and ethics