Skip to main content

Molecular and Collective Dynamics in Liquid Crystals and Other Mesophases

  • Chapter
  • First Online:
  • 1500 Accesses

Abstract

In a sense, liquid crystals are strongly related to polymers as concerns molecular dynamics. Analytical treatments on the basis of suitable equations of motions result again in solutions based on collective relaxation modes. The features how order-director fluctuations manifest themselves in NMR relaxation experiments and dynamic light scattering will be figured out in detail. Molecular dynamics in lipid bilayers, often considered as biological model membranes, and other layered structures are further examples belonging to this category. This chapter also addresses less common subjects such as shape fluctuations of vesicles and the consequences of the diffusion of structural defects on dielectric relaxation. Finally, the dynamics in the ordered mesophase of poly(dialkylsiloxane) materials will be examined as a relatively exotic but nevertheless most interesting research area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    At this point, it should be noted that this sort of polymers must not be confused with liquid-crystalline side or main-chain polymers which actually contain mesogenic groups leading to ordered phases in analogy to conventional liquid crystals.

  2. 2.

    This is in contrast to partly immobilized systems such as isotropic polymer networks, for example (see Sect. 5.3): The temporal average of the restricted orientations of a mesh-chain suggests a finite value of the mean second-order Legendre polynomial in Eq. (6.3) while the (powdery) ensemble average over all mesh chains vanishes. Ergodicity is violated, and the term “order” is ill-defined in this case. On the other hand, if the network is strongly stretched so that ensemble and time averages of mesh orientations approach each other, the term “order” may be appropriate in turn.

  3. 3.

    Note that there is a subtle difference between, on the one hand, the energy of a (variable) magnetization, Eq. (6.7) multiplied by the volume, and the Zeeman energy of a (fixed) nuclear dipole in a magnetic field, Eq. (3.2), on the other!

  4. 4.

    A treatment differentiating all three Frank elastic constants will follow in Sect. 6.7.2.

  5. 5.

    From a molecular point of view, shear stress can also be interpreted as torque per unit volume with a vector direction perpendicular to shear stress.

  6. 6.

    Contrary to the usual representation [1], it was argued in Ref. [17] that the right-hand side of Eq. (6.32) should in principle be supplemented by a term \( - {\mathop\frown\limits_{K} }\left( {{n}\cdot {{\nabla}^2}{n}} \right){n} \), that is, by a vector aligned along the director \( {n} = {{{n}}_0} + \delta {n} \). Since we are referring here to shear deformations in lateral directions, that is, orientational fluctuations, this term will not be pursued any further.

  7. 7.

    Note that we distinguish between electric polarization \( \hat{{P}} \) and wave polarization. The latter is defined by the orientation of the electric field vector \( \hat{{E}} \).

  8. 8.

    This is in contrast to spin–lattice relaxation. In this case, flip-flop spin diffusion (see the discussion following Eqs. 5.169 and 5.247) as an additional exchange mechanism mediates averaging over all heterogeneities. Spin–lattice relaxation curves therefore tend to decay mono-exponentially in a wide range, whereas transverse relaxation is subject to a superposition of virtually two exponential functions.

References

  1. de Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, Oxford

    Google Scholar 

  2. Chandrasekhar S (1992) Liquid crystals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Stephen MJ, Straley JP (1974) Rev Mod Phys 46:617

    Article  CAS  Google Scholar 

  4. Anoardo E, Pusiol DJ (2000) J Mol Struct 516:273

    Article  CAS  Google Scholar 

  5. Anoardo E, Pusiol DJ (1996) Phys Rev Lett 76:3983

    Article  CAS  Google Scholar 

  6. Landau LD, Lifshitz EM (1958) Statistical physics. Addison Wesley, Reading

    Google Scholar 

  7. Maier W, Saupe A (1960) Z Naturforsch A 15:287

    Google Scholar 

  8. Jones RAJ (2002) Soft condensed matter. Oxford University Press, Oxford

    Google Scholar 

  9. Witten TA, Pincus P (2004) Structured fluids, polymers, colloids, surfactants. Oxford University Press, Oxford/New York

    Google Scholar 

  10. Hamley IW (2000) Introduction to soft matter, polymers, colloids, amphiphiles and liquid crystals. Wiley, Chichester

    Google Scholar 

  11. Daoud M, Williams CE (eds) (1999) Soft matter physics. Springer, Berlin

    Google Scholar 

  12. Vilfan M, Vrbancic-Kopac N (1996) In: Crawford GP, Zumer S (eds) Liquid crystals in complex geometries. Taylor & Francis, London, p p. 159

    Google Scholar 

  13. Pochan JM, Hinman DF, Froix MF (1976) Macromolecules 9:611

    Article  CAS  Google Scholar 

  14. Godovsky YK, Papkov VS (1989) Adv Polym Sci 88:129

    Article  Google Scholar 

  15. Dong RY (1994) Nuclear magnetic resonance of liquid crystals. Springer, New York

    Book  Google Scholar 

  16. Groupe d’étude des cristaux liquides (Orsay) (1961) J Chem Phys 51

    Google Scholar 

  17. Kelly JR, Palffy-Muhoray P (1997) Phys Rev E 55:4378

    Article  CAS  Google Scholar 

  18. Pincus P (1969) Solid State Commun 7:415

    Article  CAS  Google Scholar 

  19. Doane JW, Johnson DL (1970) Chem Phys Lett 6:291

    Article  CAS  Google Scholar 

  20. Doane JW, Tarr CE, Nickerson MA (1974) Phys Rev Lett 33:620

    Article  CAS  Google Scholar 

  21. Ukleja P, Pirs J, Doane JW (1976) Phys Rev A 14:414

    Article  CAS  Google Scholar 

  22. Dong RY (2002) Prog NMR Spectrosc 41:115

    Article  CAS  Google Scholar 

  23. Vold RL, Vold RR, Warner M (1988) J Chem Soc Faraday Trans II 84:997

    Article  CAS  Google Scholar 

  24. Wölfel W, Noack F, Stohrer M (1975) Z Naturforsch 301:437

    Google Scholar 

  25. Noack F, Notter M, Weiss W (1988) Liq Cryst 3:907

    Article  CAS  Google Scholar 

  26. Anoardo E, Grinberg F, Vilfan M, Kimmich R (2004) Chem Phys 297:99

    Article  CAS  Google Scholar 

  27. Bonetto F, Anoardo E, Kimmich R (2003) J Chem Phys 118:9037

    Article  CAS  Google Scholar 

  28. Bonetto F, Anoardo E (2003) Phys Rev E 68:021703

    Article  CAS  Google Scholar 

  29. Kimmich R, Anoardo E (2004) Prog NMR Spectrosc 44:257

    Article  CAS  Google Scholar 

  30. Grinberg F, Kimmich R (1995) J Chem Phys 103:365

    Article  CAS  Google Scholar 

  31. Fischer E, Grinberg F, Kimmich R, Hafner S (1998) J Chem Phys 109:846

    Article  CAS  Google Scholar 

  32. Grinberg F, Kimmich R (1996) J Chem Phys 105:3301

    Article  CAS  Google Scholar 

  33. Ho JT (2001) In: Kumar S (ed) Liquid crystals, experimental study of physical properties and phase transitions. Cambridge University Press, Cambridge, p p. 197

    Google Scholar 

  34. Borsali R, Yoon DY, Pecora R (1998) J Phys Chem B 102:6337

    Article  CAS  Google Scholar 

  35. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  36. de Jeu WH (1980) Physical properties of liquid crystalline materials. Gordon and Breach, New York

    Google Scholar 

  37. de Gennes PG (1969) Mol Cryst Liq Cryst 7:325

    Article  Google Scholar 

  38. Zulauf M, Bertolotti M, Scudieri F (1975) J Phys Colloq C1 36:265

    Google Scholar 

  39. Zulauf M, Bertolotti M, Scudieri F (1975) J Appl Phys 46:5152

    Article  CAS  Google Scholar 

  40. Vold RR, Vold RL (1988) J Chem Phys 88:4655

    Article  CAS  Google Scholar 

  41. Blinc R, Luzar M, Vilfan M, Burgar M (1975) J Chem Phys 63:3445

    Article  CAS  Google Scholar 

  42. Blinc R (1976) NMR Basic Prin Prog 13:97

    CAS  Google Scholar 

  43. Vilfan M, Kogoj M, Blinc R (1987) J Chem Phys 86:1055

    Article  CAS  Google Scholar 

  44. Marqusee JA, Warner M, Dill KA (1984) J Chem Phys 81:6404

    Article  Google Scholar 

  45. Rommel E, Noack F, Meier P, Kothe G (1988) J Phys Chem 92:2981

    Article  CAS  Google Scholar 

  46. Kimmich R, Schnur G, Scheuermann A (1983) Chem Phys Lipids 32:271

    Article  CAS  Google Scholar 

  47. Kehr M, Fatkullin N, Kimmich R (2007) J Chem Phys 127:084911

    Article  Google Scholar 

  48. Kimmich R, Voigt G (1979) Chem Phys Lett 62:181

    Article  CAS  Google Scholar 

  49. Kimmich R, Voigt G (1978) Z Naturforsch 33a:1294

    CAS  Google Scholar 

  50. Tardieu A, Luzzati V, Reman FC (1973) J Mol Biol 75:711

    Article  CAS  Google Scholar 

  51. Barth P, Hafner S, Denner P (1996) Macromolecules 29:1655

    Article  CAS  Google Scholar 

  52. Schneider MB, Jenkins JT, Webb WW (1984) J Phys (France) 45:1457

    Article  CAS  Google Scholar 

  53. Milner ST, Safran SA (1987) Phys Rev A 36:4371

    Article  CAS  Google Scholar 

  54. Halle B, Gustafsson S (1997) Phys Rev E 56:690

    Article  CAS  Google Scholar 

  55. Vilfan M, Althoff G, Vilfan I, Kothe G (2001) Phys Rev E 64:022902

    Article  CAS  Google Scholar 

  56. Althoff G, Frezzato D, Vilfan M, Stauch O, Schubert R, Vilfan I, Moro GJ, Kothe G (2002) J Phys Chem B 106:5506

    Article  CAS  Google Scholar 

  57. Arfken GB, Weber HJ (1995) Mathematical methods for physicists. Academic, San Diego

    Google Scholar 

  58. Halle B (1991) J Chem Phys 94:3150

    Article  CAS  Google Scholar 

  59. Perlo J, Meledandri CJ, Anoardo E, Brougham DF (2011) J Phys Chem 115:3444

    Article  CAS  Google Scholar 

  60. Althoff G, Stauch O, Vilfan M, Frezzato D, Moro GJ, Hauser P, Schubert R, Kothe G (2002) J Phys Chem B 106:5517

    Article  CAS  Google Scholar 

  61. Kögler G, Loufakis K, Möller M (1990) Polymer 31:1538

    Article  Google Scholar 

  62. Zeuner U, Dippel T, Noack F, Müller K, Mayer C, Heaton N, Kothe G (1992) J Chem Phys 97:3794

    Article  CAS  Google Scholar 

  63. Kimmich R, Stapf S, Möller M, Out R, Seitter R-O (1994) Macromolecules 27:1505

    Article  CAS  Google Scholar 

  64. Kimmich R, Fatkullin N (2004) Adv Polym Sci 170:1

    CAS  Google Scholar 

  65. Grinberg F, Kimmich R, Möller M, Molenberg A (1996) J Chem Phys 105:9657

    Article  CAS  Google Scholar 

  66. Weglarz WP, Peemoeller H, Rudin A (2000) J Polym Sci B Polym Phys 38:2487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kimmich, R. (2012). Molecular and Collective Dynamics in Liquid Crystals and Other Mesophases. In: Principles of Soft-Matter Dynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5536-9_6

Download citation

Publish with us

Policies and ethics