Skip to main content

Neglected Oil Crop Biotechnology

  • Chapter
  • First Online:
Biotechnology of Neglected and Underutilized Crops

Abstract

Global food security has become increasingly dependent on only a handful of crops cultivated intensively leading to crop replacement and a massive reduction in the number of species and diversity of crops. This poses a threat to local and global food security because the replaced indigenous crops are often essential for low input agriculture, have unique nutritional value, and contain diversity of locally adapted genotypes with resistance to a wide array of biotic and abiotic stresses. Most of these plant species are important locally or regionally only, and are known as ‘minor’, ‘neglected’, ‘underexploited’ or ‘underutilized’ crops. Like many other crops, production of oilseeds has not improved significantly due to their susceptibility to pests, sensitivity to abiotic stresses and low nutrient use efficiency. An approach for meeting the increasing demand for vegetable oils will be to introduce new or underutilized oilseed crops that are more suited for cultivation on less fertile land that do not support production of major oilseed crops. A need also exists for dedicated non-food oilseed crops that can be used for metabolic engineering of novel oil compositions for industrial applications. A number of oilseeds have recently received attention for their potential to fill one or more of these niches. These include Ironweed (Vernonia galamensis), crambe (Crambe abyssinica), desert mustard (Lesquerella fendleri), niger (Guizotia abyssinica), camelina (Camelina sativa), the Ethiopian mustard (Brassica carinata) and Sesame (Sesamum indicum). In this chapter emphasis has been given to current biotechnology research and progress for the improvement of these neglected oil crops. Agricultural biotechnology is creating new tools to tackle the problems of crop improvement, rural poverty, employment and income generation by helping to enhance farm productivity and production, improve quality, and explore marketing opportunities in newer ways. Technology like tissue culture provides the means for the culture of protoplasts, ovules and embryos used to create new genetic variation by overcoming reproductive barriers between distantly related crop species and haploid production by the culture of anthers and microspores to shorten the selection cycle in a breeding programme. Characterization of genetic diversity by molecular markers is important for devising effective sampling and conservation strategies. Molecular markers can also be used to certify varieties, to determine the presence or absence of diseases and development of linkage maps for identifying quantitative trait loci and marker assisted selection. Transferred genes through genetic engineering may contribute to a range of properties, including resistance/tolerance to biotic and abiotic factors, improved nutritional status and better management options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NAA:

α- napthaleneacetic acid

BA:

Benzyl adenine

MS:

Murashige and Skoog

TDZ:

Thidiazuron

2-ip:

N6-[2-isopentenyl] adenine

KN:

6-furfurylaminopurine

IBA:

Indole-3-butyric acid

2, 4-D:

2, 4-dichlorophenoxyacetic acid

AFLP:

Amplified fragment length polymorphism

MAS:

Marker assisted selection

EST:

Expressed sequence tags

DGAT:

Diacylglycerol acyltransferase

GISH:

Genomic in situ hybridization

References

  • Abdellatef E, Sirelkhatem R, Ahmed MMM, Radwan KH, Khalafalla MM (2008) Study of genetic diversity in Sudanese sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 7:4423–4427

    CAS  Google Scholar 

  • Abdellatef E, Ahmed MMM, Daffalla HM, Khalafalla MM (2010) Enhancement of adventitious shoot regeneration in sesame (Sesamum indicum L.) cultivar promo KY using ethylene inhibitors. J Phytol 2:61–67

    Google Scholar 

  • Adda S, Reddy TP, Kavi Kishor PB (1993) Somatic embryogenesis and organogenesis in Guizotia abyssinica. In Vitro Cell Dev Biol-Plant 30:104–107

    Google Scholar 

  • Adda S, Reddy TP, Kavi Kishor PB (1994) Androclonal variation in niger (Guizotia abyssinica Cass). Euphytica 79:59–64

    Article  Google Scholar 

  • Agarwal A, Pant T, Ahmed Z (2010) Camelina sativa: a new crop with biofuel potential introduced in india. Curr Sci 99:1194–1195

    Google Scholar 

  • Ali GM, Yasumoto S, Katsuta MS (2007) Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by amplified fragment length polymorphism markers. J Biotechnol 10:12–23

    Google Scholar 

  • Anonymous (2008) World Sesame situation, American Sesame Growers Association. http://www.sesamegrowers.org/worldstatusofsesame.htm. Accessed 15 Jan 2008

  • Arora R, Bhojwani SS (1988) Production of androgenic plants through pollen embryogenesis in anther cultures of Brassica carinata A. Braun. Biol Plant 30:25–29

    Article  Google Scholar 

  • Ashri A (1987) Sesame. In: Robbelen G, Downey RK, Ashri A (eds) Oil crops of the world: their breeding and utilization. McGraw-Hill, New York

    Google Scholar 

  • Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.-an important oil plant. J Agric Technol 2:259–269

    Google Scholar 

  • Baye T, Becker HC, Witzke-Ehbrecht SV (2005) Vernonia galamensis, a natural source of epoxy oil: variation in fatty acid composition of seed and leaf lipids. Ind Crop Prod 21:257–261

    Article  CAS  Google Scholar 

  • Bedigian D, Harlan JR (1986) Evidence for cultivation of Sesame in the ancient world. Econ Bot 40:137–154

    Article  Google Scholar 

  • Bekele E, Geleta M, Dagne K, Jones AL, Barnes I, Bradman N, Thomas MG (2007) Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS. Genet Resour Crop Evol 54:1419–1427

    Article  CAS  Google Scholar 

  • Belay S, Rier JP, Ayorinde FO (1989) Preliminary observation of the chemical composition of callus derived from immature seeds of Vernonia galamensis, Var. Ethiopica, Gilbert. J Am Oil Chem Soc 66:828

    Article  CAS  Google Scholar 

  • Bhat JG, Murthy HN (2007) Factors affecting in vitro gynogenic haploid production in niger (Guizotia abyssinica (L. f.) Cass.). Plant Growth Regul 52:241–248

    Article  CAS  Google Scholar 

  • Bhat JG, Murthy HN (2008) Haploid plant regeneration from unpollinated ovule cultures of niger (Guizotia abyssinica (L. f.) Cass.). Russ J Plant Physiol 55:241–245

    Article  CAS  Google Scholar 

  • Biesaga-Koscielniak J, Koscielniak J, Filek M, Janeczko A (2008) Rapid production of wheat cell suspension cultures directly from immature embryos. Plant Cell Tiss Organ Cult 94:139–147

    Article  Google Scholar 

  • Bouck A, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16:907–924

    Article  PubMed  CAS  Google Scholar 

  • Brar GS, Ahuja L (1979) Sesame: its culture, genetics, breeding and biochemistry. Annu Rev Plant Sci 1:245–313

    CAS  Google Scholar 

  • Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210

    Article  PubMed  CAS  Google Scholar 

  • Carlson KD, Schneider WJ, Chang SP, Princen LH (1981) Vernonia galamensis seed oil: a new source for epoxy coatings. In: Pryde EH, Princen LH, Mukherjee KD (eds) New sources of fats and oils. American Oil Chemists’ Society, Champaign

    Google Scholar 

  • Carlson KD, Chaudhry A, Bagby MO (1990) Analysis of oil and meal from Lesquerella fendleri seed. J Am Oil Chem Soc 67:438–442

    Article  CAS  Google Scholar 

  • CGIAR (2006) Enhancing the delivery of genomics research outcomes. Genomics research in the CGIAR: effective means of establishing platforms for genetic research. Science council of the consultative group for international agricultural research, the secretariat, Rome, Italy

    Google Scholar 

  • Chae YA, Park SK, Anand IJ (1987) Selection in vitro for herbicide tolerant cell lines of Sesamum indicum 2: selection of herbicide tolerant calli and plant regeneration. Kor J Plant Breed 19:75–80

    Google Scholar 

  • Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4:173–178

    Article  Google Scholar 

  • Chaudhary S, Parmenter DL, Moloney MM (1998) Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep 17:195–200

    Article  CAS  Google Scholar 

  • Chen GQ, Lin JT, Lu C (2011) Hydroxy fatty acid synthesis and lipid gene expression during seed development in Lesquerella fendleri. Ind Crop Prod 34:1286–1292

    Article  CAS  Google Scholar 

  • Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2009) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res. doi:10.1007/s11248-009-9302-z

    Google Scholar 

  • Chhikara S, Dutta I, Paulose B, Jaiwal PK, Dhankher OP (2011) Development of an Agrobacterium-mediated stable transformation method for industrial oilseed crop Crambe abyssinica ‘BelAnn’. Ind Crop Prod. doi:10.1016/j.indcrop.2011.07.021

    Google Scholar 

  • Chun JA, Lee WH, Han MO, Lee JW, Yi YB, Goo YM, Lee SW, Bae SC, Cho KJ, Chung CH (2007) Molecular and biochemical characterizations of dehydroascorbate reductase from sesame (Sesamum indicum L.) hairy root cultures. J Agric Food Chem 55:6067–6073

    Article  PubMed  CAS  Google Scholar 

  • Chun JA, Lee JW, Yi YB, Park GY, Chung CH (2009) Induction of hairy roots and characterization of peroxidase expression as a potential root growth marker in sesame. Prep Biochem Biotechnol 39:345–359

    Article  PubMed  CAS  Google Scholar 

  • Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226

    Article  Google Scholar 

  • Chuong PV, Pauls KP, Beversdorf WD (1987) Protoplast culture and plant regeneration from Brassica carinata Braun. Plant Cell Rep 6:67–69

    Article  Google Scholar 

  • Chyan CL, Lee TT, Liu CP, Yang YC, Tzen JT, Chou WM (2005) Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotechnol Biochem 69:2319–2325

    Article  PubMed  CAS  Google Scholar 

  • Dagne K, Cheng B, Heneen WK (2000) Number and sites of rDNA loci of Guizotia abyssinica (L. f.) Cass. as determined by fluorescence in situ hybridization. Hereditas 132:63–65

    Article  PubMed  CAS  Google Scholar 

  • Daniel E (2008) Investigation of the genetic variability among land races of sesame from Ethiopia. MA Thesis, University of Hohenhein, Stuttgart, Germany

    Google Scholar 

  • Dawson IK, Hedley PE, Guarino L, Jaenicke H (2009) Does biotechnology have a role in the promotion of underutilised crops? Food Policy 34:319–328

    Article  Google Scholar 

  • Demeke T, Lynch DR, Kawchuk LM, Kozub GC, Armstrong JD (1996) Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep 15:662–667

    Article  CAS  Google Scholar 

  • Dempewolf H, Kane NC, Ostevik KL, Geleta M, Barker MS, Lai Z, Stewart ML, Bekele E, Engels JM, Cronk QB, Rieserberg LH (2010) Establishing genomic tools and resources for Guizotia abyssinica (L.f.) Cass.—the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048–1058

    Article  PubMed  CAS  Google Scholar 

  • Du XZ, Ge XH, Zhao ZG, Li ZY (2008) Chromosome elimination and fragment introgression and recombination producing intertribal partial hybrids from Brassica napus × Lesquerella fendleri crosses. Plant Cell Rep 27:261–271

    Article  PubMed  CAS  Google Scholar 

  • Dykinga J (1999) A storybook future for lesquerella? Agric Res Mag 47:14–15

    Google Scholar 

  • Erickson LR, Straus NA, Beversdorf WD (1983) Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theor Appl Genet 65:201–206

    Article  CAS  Google Scholar 

  • FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest genetic resources working paper FGR/59E. Forest resources development service, Forest resources division, Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2005) Food and Agricultural Organisation of the United Nations. FAOSTAT Database. http:/apps.fao.org/default.htm

  • Ferrie AMR, Bethune TD (2011) A microspore embryogenesis protocol for Camelina sativa, a multi-use crop. Plant Cell Tiss Org Cult 106:495–501

    Article  CAS  Google Scholar 

  • Francisco-Ortega J, Fuertes-Aguilar J, Gómez-Campo C, Santos-Guerra A, Jansen RK (1999) Internal transcribed spacer sequence phylogeny of Crambe L. (Brassicaceae): molecular data reveal two old world disjunctions. Mol Phylogenet Evol 11:361–380

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T, Hoshikuma A (2011) Biosynthetic origin of 2-geranyl-1,4-naphthoquinone and its related anthraquinone in a Sesamum indicum hairy root culture. Phytochem 72:871–874

    Article  CAS  Google Scholar 

  • Furumoto T, Ohara T, Kubo T, Kawanami Y, Fukui H (2007) 2-Geranyl-1,4-naphthoquinone, a possible intermediate of anthraquinones in a Sesamum indicum hairy root culture. Biosci Biotechnol Biochem 71:2600–2602

    Article  PubMed  CAS  Google Scholar 

  • Galasso I, Manca A, Braglia L, Martinelli T, Morello L, Breviario D (2010) h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol Breed. doi:10.1007/s11032-010-9515-0

  • Ganapathi TR, Nataraja K (1993) Effect of auxins and cytokinins on plant regeneration from hypocotyls and cotyledons of niger (Guizotia abyssinica). Biol Plant 35:209–215

    Article  CAS  Google Scholar 

  • Gangopadhyay G, Poddar R, Gupta S (1998) Micropropagation of sesame (Sesamum indicum L.) by in vitro multiple shoot production from nodal explants. Phytomorphology 48:83–90

    Google Scholar 

  • Gao HB, Wang Y, Gao F, Luo P (1998) Studies on the plant regeneration from single cell culture of Crambe abyssinica. Hereditas (Beijing) 20:50–52

    Google Scholar 

  • Gehringer A, Friedt W, Lühs W, Snowdon RJ (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Geleta M, Bryngelsson T, Bekele E, Dagne K (2007a) AFLP and RAPD analyses of genetic diversity of wild and/or weedy Guizotia (Asteraceae) from Ethiopia. Hereditas 144:53–62

    Article  PubMed  Google Scholar 

  • Geleta M, Bryngelsson T, Bekele E, Dagne K (2007b) Genetic diversity of Guizotia abyssinica (L. f.) Cass. (Asteraceae) from Ethiopia as revealed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 54:601–614

    Article  Google Scholar 

  • George V, Bapat A, Rao PS (1987) In vitro Multiplication of Sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21

    Google Scholar 

  • Getinet A, Sharma SM (1996) Niger, Guizotia abyssinica (L. f.) Cass. Promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resources Institute, Rome, pp 1–59

    Google Scholar 

  • Ghamkhar K, Croser J, Aryamanesh N, Campbell M, Kon’kova N, Francis C (2010) Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53:558–567

    Article  PubMed  CAS  Google Scholar 

  • Hansen LN (1998) Intertribal somatic hybridization between rapid cycling Brassica oleracea L. and Camelina sativa (L.) Crantz. Euphytica 104:173–179

    Article  Google Scholar 

  • Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178:510–516

    Article  CAS  Google Scholar 

  • Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2011) Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot. doi:10.1016/j.envexpbot.2011.07.004

    Google Scholar 

  • Hatanaka T, Yu K, Hildebrand DF (2003) Cloning and expression of a Vernonia and Euphorbia diacylglycerol acyltransferase cDNAs. In: Murata N, Yamada M, Nishida I, Okuyama H, Sekiya J, Hajime W (eds) Advanced research on plant lipids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hatanaka T, Shimizu R, Hildebrand DF (2004) Expression of a Stokesia laevis epoxygenase gene. Phytochemistry 65:2189–2196

    Article  PubMed  CAS  Google Scholar 

  • Hema BP, Murthy HN (2008) Improvement of in vitro androgenesis in niger using amino acids and polyamines. Biol Plant 52:121–125

    Article  CAS  Google Scholar 

  • Hitz WD (1998) Fatty acid modifying enzymes from developing seeds of Vernonia galamensis. US Patent 5846784, December 8

    Google Scholar 

  • Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol 46:337–350

    Article  Google Scholar 

  • Hsiao ES, Lin LJ, Li FY, Wang MM, Liao MY, Tzen JT (2006) Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J Agric Food Chem 54:9544–9550

    Article  PubMed  CAS  Google Scholar 

  • Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, Rocher JD, Kiser J (2010) Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol. doi:10.1186/1471-2229-10-233

    PubMed  Google Scholar 

  • Jadhav A, Katavic V, Marillia EF, Giblin EM, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220

    Article  PubMed  CAS  Google Scholar 

  • Jadimath VG, Murthy HN, Pyati AN, Kumar HGA, Ravishankar BV (1998) Plant regeneration from leaf cultures of Guizotia abssinica (Niger) and Guizotia scabra. Phytomorphology 48:131–135

    Google Scholar 

  • Jain RK, Chowdhury JB, Sharma DR, Friedt W (1988) Genotypic and media effects on plant regeneration from cotyledon explant cultures of some Brassica species. Plant Cell Tiss Org Cult 14:197–206

    Article  Google Scholar 

  • Jaiswal SK, Hammatt N, Bhojwani SS, Cocking EC, Davey MR (1990) Plant regeneration from cotyledon protoplasts of Brassica carinata. Plant Cell Tiss Org Cult 22:159–165

    Article  Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops. ISAAA briefs 41. ISAAA, Ithaca

    Google Scholar 

  • Jiang JJ, Zhao XX, Tian W, Li TB, Wang YP (2009) Intertribal somatic hyprids between Brassica napus and Camelina sativa with high linolenic acid content. Plant Cell Tiss Org Cult 99:91–95

    Article  Google Scholar 

  • Jin UH, Chun JA, Han MO, Lee JW, Yi YB, Lee SW, Chung CH (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Prog Biochem Biophys 40:3754–3762

    CAS  Google Scholar 

  • Joshi AB (1961) Sesamum. A monograph. Indian Central Oilseed Committee, Hyderabad

    Google Scholar 

  • Jourdan P, Salazar E (1993) Brassica carinata resynthesized by protoplast fusion. Theor Appl Genet 86:567–572

    Article  Google Scholar 

  • Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa. Plant Physiol Biochem 49:223–229

    Article  PubMed  CAS  Google Scholar 

  • Kharenko OA, Zaharia LI, Giblin M, Čekić V, Taylor DC, Palmer CD, Abrams SR, Loewen MC (2011) Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri. Plant Cell Tiss Org Cult 105:415–422

    Article  CAS  Google Scholar 

  • Kim HY, Byeon GH (1991) Effect of growth regulators on organ cultures of sesame. J Subtrop Agric Res Dev 8:93–103

    Google Scholar 

  • Kim MK, Park SK, Chae YA (1987) Selection in vitro for herbicide tolerant cell lines of Sesamum indicum: effects of explants and hormone combinations on callus induction. Kor J Plant Breed 19:70–94

    Google Scholar 

  • Kinney AJ (2002) Perspectives on the production of industrial oils in genetically engineered oilseeds. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker Inc., New York

    Google Scholar 

  • Kolte SJ (1985) Disease of annual edible oil seed crops. Vol II: Rapeseed-mustard and sesame diseases. CRC Press, Boca Raton

    Google Scholar 

  • Kumar HG, Murthy HN, Jadimath VG, Sheelavantmath SS, Pyati AN, Ravishankar BV (2000) Direct somatic embryogenesis and plantlet regeneration from leaf explants of niger, Guizotia abyssinica (L.f.) Cass. Ind J Exp Biol 38:1073–1075

    CAS  Google Scholar 

  • Kuvshinov V, Kanerva A, Koivu K, Pehu E, Kuvshinova S (2002, 2004) A transformation system in Camelina sativa. Patents WO 02/38779 A1 and US 2004/0031076 A1

    Google Scholar 

  • Laurentin H, Karlovsky P (2007) AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters. Genet Resour Crop Evol 54:1437–1446

    Article  Google Scholar 

  • Laurentin H, Ratzinger A, Karlovsky P (2008) Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.). BMC Genomics 9:250–260

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Park YH, Park YS, Kim BG (1985) Propagation of sesame (Sesamum. indicum L.) through shoot tip culture. Kor J Plant Breed 17:367–372

    Google Scholar 

  • Lee SY, Kim HS, Lee YT, Park CH (1988) Effect of growth regulators, cold pretreatment and genotype in anther culture of sesame (Sesamum indicum L.). Res Rep Rural Dev Adm Biotechnol 30:74–79

    Google Scholar 

  • Li X, Gao P, Gjetvaj B, Westcott N, Gruber MY (2009) Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci 177:68–80

    Article  CAS  Google Scholar 

  • Li R, Yu K, Hildebrand DF (2010a) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids. doi:10.1007/s11745-010-3385-4

    Google Scholar 

  • Li X, Ahlman A, Yan X, Lindgren H, Zhu LH (2010b) Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tiss Org Cult 100:149–156

    Article  CAS  Google Scholar 

  • Li X, Ahlman A, Lindgren H, Zhu LH (2011) Highly efficient in vitro regeneration of the industrial oilseed crop Crambe abyssinica. Ind Crop Prod 33:170–175

    Article  CAS  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium -mediated transformation. Plant Cell Rep 27:273–278

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252–259

    Article  PubMed  CAS  Google Scholar 

  • Marles MAS, Gruber MY, Scoles GJ, Muir AD (2003) Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62:663–672

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Lema A, Velasco L, Perez-Vich B (2010) Transferability, amplification quality, and genome specificity of microsatellites in Brassica carinata and related species. J Appl Genet 51:123–131

    Article  PubMed  CAS  Google Scholar 

  • Márquez-Lema A, Fernández-Martínez JM, Pérez-Vich B, Velasco L (2008) Development and characterisation of a Brassica carinata inbred line incorporating genes for low glucosinolate content from B. juncea. Euphytica 164:365–375

    Article  CAS  Google Scholar 

  • Mary RJ, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tiss Org Cult 49:67–70

    Article  CAS  Google Scholar 

  • Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC (2007) Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnol J 5:636–645

    Article  PubMed  CAS  Google Scholar 

  • Mietkiewska E, Hoffman TL, Brost JM, Giblin EM, Barton DL, Francis T, Zhang Y, Taylor DC (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627

    Article  CAS  Google Scholar 

  • Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lesquerella fendleri that specifically elongates hydroxy fatty acids. Plant Physiol 127:1635–1643

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Chowrira G, Rowland O, Blacklock BJ, Smith MA, Kunst L (2004) A root-specific condensing enzyme from Lesquerella fendleri that elongates very-long-chain saturated fatty acids. Plant Mol Biol 56:917–927

    Article  PubMed  CAS  Google Scholar 

  • Murthy HN, Kumar AHG, Paek KY (2000) Anther culture of niger. Kor J Plant Tiss Cult 27:353–358

    Google Scholar 

  • Murthy HN, Jeong JH, Choi YE, Paek KY (2003) Agrobacterium-mediated transformation of niger [Guizotia abyssinica (L. f.) Cass.] using seedling explants. Plant Cell Rep 21:1183–1187

    Article  PubMed  CAS  Google Scholar 

  • Nagella P, Hosakatte NM, Ravishankar KV, Hahn E, Paek K (2008) Analysis of genetic diversity among Indian niger [Guizotia abyssinica (L. f.) Cass.] cultivars based on randomly amplified polymorphic DNA markers. Electron J Biotechnol 11:1–5

    Article  Google Scholar 

  • Naik PM, Murthy HN (2010) Somatic embryogenesis and plant regeneration from cell suspension culture of niger (Guizotia abyssinica Cass.). Acta Physiol Plant 32:75–79

    Article  Google Scholar 

  • Narasimhulu SB, Chopra VL (1987) Plant regeneration from callus culture of Brassica carinata A. Br. and its implication to improvement of oilseed Brassica. Plant Breed 99:49–55

    Article  Google Scholar 

  • Narasimhulu SB, Chopra VL (1988) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7:104–106

    Article  Google Scholar 

  • Narasimhulu SB, Kirti PB, Prakash S, Chopra VL (1992a) Rapid and efficient plant regeneration from hypocotyl protoplasts of Brassica carinata. Plant Cell Rep 11:159–162

    CAS  Google Scholar 

  • Narasimhulu SB, Kirti PB, Prakash SV, Chopra VL (1992b) Shoot regeneration in stem explants and its amenability to Agrobacterium-mediated gene transfer in Brassica carinata. Plant Cell Rep 11:359–362

    CAS  Google Scholar 

  • Narasimhulu SB, Kirti PB, Bhatt SR, Prakash S, Chopra VL (1994) Intergeneric protoplast fusion between Brassica carinata and Camelina sativa. Plant Cell Rep 13:657–660

    Article  Google Scholar 

  • Ncube I, Read JS (1995) Evaluation of Vernonia galamensis lipase (acetone powder) for use in biotechnology. Ind Crop Prod 3:285–292

    Article  Google Scholar 

  • Nguyen T, Liu X, Derocher J (2011) Floral dip method for transformation of Camelina. US Patent Application 20110145950. Date 16-06-2011

    Google Scholar 

  • Nikam TD, Shitole MG (1993) Regeneration of niger (Guizotia abyssinica Cass.) CV Sahyadri from seedling explants. Plant Cell Tiss Org Cult 32:345–349

    Article  CAS  Google Scholar 

  • Nikam TD, Shitole MG (1997) In vitro plant regeneration from callus of niger (Guizotia abyssinica Cass.) cv. Sahyadri. Plant Cell Rep 17:155–158

    Article  CAS  Google Scholar 

  • Nitovs’ka IO, Shakhovs’kyĭ AM, Cherep MN, Horodens’ka MM, Kuchuk MV (2006) Construction of the cybrid transplastomic Brassica napus plants containing Lesquerella fendleri chloroplasts. Tsitol Genet 40:3–11

    Google Scholar 

  • Nugent JM, Palmer JD (1988) Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs. Curr Genet 14:501–509

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara T, Chiba K, Tada M (1993) Production and high yield of napthoquinone by a hairy root culture of Sesamum indicum. Phytochem 33:1095–1098

    Article  CAS  Google Scholar 

  • Ologunde MO, Ayorinde FO, Shepard RL (1990) Chemical evaluation of defatted Vernonia galamensis meal. J Am Oil Chem Soc 67:92–94

    Article  CAS  Google Scholar 

  • Ovcharenko O, Momot V, Cherep N, Sheludko Y, Komarnitsky I, Rudas V, Kuchuk N (2011) Transfer of transformed Lesquerella fendleri (Gray) Wats chloroplasts into Orychophragmus violaceus (L.) by protoplast fusion. Plant Cell Tiss Org Cult 105:21–27

    Article  Google Scholar 

  • Palmer CD, Keller WA (2011) Somatic embryogenesis in Crambe abyssinica Hochst. ex R.E. Fries using seedling explants. Plant Cell Tiss Org Cult 104:91–100

    Article  Google Scholar 

  • Parsaeian M, Mirlohi A, Saeidi G (2011) Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers. Genetika 47:359–367

    PubMed  CAS  Google Scholar 

  • Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108

    Article  PubMed  CAS  Google Scholar 

  • Perdue RE (1988) Systematic botany in the development of Vernonia galamensis as a new industrial oilseed crop for the semi-arid tropics. Symb Bot Ups 28:125–135

    Google Scholar 

  • Perdue RE, Carlson KD, Gilbert MG (1986) Vernonia galamensis potential new crop source of epoxy acid. Econ Bot 40:54–68

    Article  CAS  Google Scholar 

  • Petros Y, Merker A, Zeleke H (2007) Analysis of genetic diversity of Guizotia abyssinica from Ethiopia using inter simple sequence repeat markers. Hereditas 144:18–24

    Article  PubMed  Google Scholar 

  • Pham TD, Geleta M, Bui TM, Bui TC, Merker A, Carlsson AS (2011) Comparative analysis of genetic diversity of sesame (Sesamum indicum L.) from Vietnam and Cambodia using agro-morphological and molecular markers. Hereditas 148:28–35

    Article  PubMed  Google Scholar 

  • Ploschuk EL, Cerdeiras G, Windauer L, Dierig DA, Ravetta DA (2003) Development of alternative Lesquerella species in Patagonia (Argentina): potential of L. angustifolia. Ind Crop Prod 18:1–6

    Article  CAS  Google Scholar 

  • Prince JP, Lackney VK, Angeles C, Blauth JR, Kyle MM (1995) A survey of DNA polymorphism within the genus Capsicum and the fingerprinting of pepper cultivars. Genome 38:224–231

    Article  PubMed  CAS  Google Scholar 

  • Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediation 10:61–72

    Article  PubMed  CAS  Google Scholar 

  • Rajeswari S, Thiruvengadam V, Ramaswamy NM (2010) Production of interspecific hybrids between Sesamum alatum Thonn and Sesamum indicum L. through ovule culture and screening for phyllody disease resistance. S Afr J Bot 76:252–258

    Article  Google Scholar 

  • Ram R, Catlin D, Romero J, Cowley C (1990) Sesame: new approaches for crop improvement. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland

    Google Scholar 

  • Ramalema SP, Shimelis H, Ncube I, Kunert KK, Mashela PW (2010) Genetic analysis among selected vernonia lines through seed oil content, fatty acids and RAPD DNA markers. Afr J Biotechnol 9:117–122

    CAS  Google Scholar 

  • Rao KR, Vaidyanath K (1997a) Callus induction and morphogenesis in sesame (Sesamum indicum L.). Adv Plant Sci 10:21–26

    Google Scholar 

  • Rao KR, Vaidyanath K (1997b) Induction of multiple shoots from seedling shoot tips of different varieties of Sesamum. Ind J Plant Physiol 2:257–261

    Google Scholar 

  • Rao KR, Kavi Kishor PB, Vaidyanath K (2002) Biotechnology of sesame-an oil seed crop. Plant Cell Biotechnol Mol Biol 3:101–110

    Google Scholar 

  • Reed DW, Taylor DC, Covello PS (1997) Metabolism of hydroxy fatty acids in developing seeds in the genera Lesquerella (Brassicaceae) and Linum (Linaceae). Plant Physiol 114:63–68

    PubMed  CAS  Google Scholar 

  • Sabharwal PS, Dolezel J (1993) Interspecific hybridization in Brassica: application of flow cytometry for analysis of ploidy and genome composition in hybrid plants. Biol Plant 35:169–177

    Article  Google Scholar 

  • Schrader-Fischer G, Apel K (1994) Organ-specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol Gen Genet 245:380–389

    Article  PubMed  CAS  Google Scholar 

  • Seither C, Avdiushko S, Hildebrand D (1997) Isolation of cytochrome P-450 genes from Vernonia galamensis. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ, Park KH, Oh MK, Choi MY, Paik CH, Lee YS, Choi YE (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Dev Biol Plant 43:209–214

    Article  CAS  Google Scholar 

  • Sharma M, Pareek LK (1998) Direct shoot bud differentiation from different explants of in vitro regenerated shoots in sesame. J Phytol Res 11:161–163

    Google Scholar 

  • Sharma SN, Kumar V, Mathur S (2009) Comparative analysis of RAPD and ISSR markers for characterization of sesame (Sesamum indicum L) genotypes. J Plant Biochem Biotechnol 18:266–271

    Google Scholar 

  • Sigareva MA, Earle ED (1999) Camalexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea. Theor Appl Genet 98:164–170

    Article  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–222

    Article  PubMed  CAS  Google Scholar 

  • Skarzhinskaya M, Landgren M, Glimelius K (1996) Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor Appl Genet 93:1242–1250

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Doyle JJ (1998) Molecular systematics of plants II: DNA sequencing. Kluwer Press, Dordrecht

    Book  Google Scholar 

  • Subramanian B, Bansal VK, Kav NNV (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J Agric Food Chem 53:313–324

    Article  PubMed  CAS  Google Scholar 

  • Suh MC, Kim MJ, Hur CG, Bae JM, Park YI, Chung CH, Kang CW, Ohlrogge JB (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123

    Article  PubMed  Google Scholar 

  • Sujatha M (1997) In vitro adventitious shoot regeneration for effective maintenance of male sterile niger (Guizotia abyssinica (L.f.) Cass.). Euphytica 93:89–95

    Article  Google Scholar 

  • Tang TZ, Niu YZ, Shui HX (2006) Cytological observation on intergeneric hybrid between Brassica chinensis and Crambe abyssinica. Yi Chuan 28:189–194

    PubMed  Google Scholar 

  • Taskin KM, Turgut K (1997) In vitro regeneration of sesame (Sesamum indicum L.). Turk J Bot 21:15–18

    Google Scholar 

  • Taskin KM, Ercan AG, Turgut K (1999) Agrobacterium tumefaciens—mediated transformation of sesame (Sesamum indicum L.). Turk J Bot 23:291–295

    Google Scholar 

  • Tattersall A, Millam S (1999) Establishment and in vitro regeneration studies of the potential oil crop species Camelina sativa. Plant Cell Tiss Org Cult 55:147–149

    Article  Google Scholar 

  • Teklewold A, Becker HC (2006a) Geographic pattern of genetic diversity among 43 Ethiopian mustard (Brassica carinata A. Braun) accessions as revealed by RAPD analysis. Genet Resour Crop Evol 53:1173–1185

    Article  Google Scholar 

  • Teklewold A, Becker HC (2006b) Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor Appl Genet 112:752–759

    Article  PubMed  CAS  Google Scholar 

  • Thompson AE, Dierig DA (1994) Initial selection and breeding of Lesquerella fendleri L., a new industrial oil seed. Ind Crop Prod 2:91–106

    Google Scholar 

  • Tiwari S, Kumar S, Gontia I (2011) Biotechnological approaches for sesame (Sesamum indicum L.) and niger (Guizotia abyssinica L.f. Cass.). Asia-Pac J Mol Biol Biotechnol 19:2–9

    Google Scholar 

  • Tomasi P, Dierig D, Dahlquist G (2002) An ovule culture technique for producing interspecific Lesquerella hybrids. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria

    Google Scholar 

  • Uzun B, Cagirgan MI (2009) Identification of molecular markers linked to determinate growth habit in sesame. Euphytica 166:379–384

    Article  CAS  Google Scholar 

  • Uzun B, Lee D, Donini P, Cagirgan MI (2003) Identification of a molecular marker linked to the closed capsule mutant trait in sesame using AFLP. Plant Breed 122:95–97

    Article  CAS  Google Scholar 

  • Volis S, Mendlinger S, Shulgina I, Oluoch M (2009) Genetic diversity in Tanzanian accessions of Brassica carinata A. Braun. Int J Plant Breed 3:86–91

    Google Scholar 

  • Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005) Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breed 124:446–453

    Article  CAS  Google Scholar 

  • Wang Y, Peng L (1998) Intergeneric hybridization between Brassica species and Crambe abyssinica. Euphytica 101:1–7

    Article  Google Scholar 

  • Wang Y, Sonntag K, Rudloff E (2003) Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet 106:1147–1155

    PubMed  CAS  Google Scholar 

  • Wang Y, Snowdon RJ, Rudloff E, Wehling P, Friedt W, Sonntag K (2004) Cytogenetic characterization and fae1 gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica. Genome 47:724–731

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sonntag K, Rudloff E, Wehling P, Snowdon RJ (2006) GISH analysis of disomic Brassica napusCrambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines. Plant Cell Rep 25:35–40

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang C, Huang BL, Huang B (2008) Agrobacterium tumefaciens-mediated transformation of Lesquerella fendleri L., a potential new oil crop with rich lesquerolic acid. Plant Cell Tiss Org Cult 92:165–171

    Article  CAS  Google Scholar 

  • Warwick SI, Gugel RK (2003) Genetic variation in the Crambe abyssinicaC. hispanicaC. glabrata complex. Genet Resour Crop Evol 50:291–305

    Article  CAS  Google Scholar 

  • Warwick SI, Gugel RK, McDonald T, Falk KC (2006) Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in Western Canada. Genet Resour Crop Evol 53:297–312

    Article  CAS  Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451

    Article  PubMed  CAS  Google Scholar 

  • Weiss EA (1971) Castor, sesame and safflower. Leonard Hill, London

    Google Scholar 

  • Were BA, Gudu S, Onkware AO, Carlsson AS, Welander M (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Org Cult 85:235–239

    Article  Google Scholar 

  • Xu ZQ, Jia JF, Hu ZD (1997) Somatic embryogenesis in Sesamum indicum L. cv. nigrum. J Plant Physiol 150:755–758

    Article  CAS  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 61:543–551

    Google Scholar 

  • Yang MZ, Jia SR, Pua EC (1991) High frequency plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tiss Org Cult 24:79–82

    Article  Google Scholar 

  • Yermanos DM, Hemstreet S, Saleeb W, Huszar CK (1972) Oil content and composition of the seed in the world collection of sesame introductions. J Am Oil Chem Soc 49:20–23

    Article  CAS  Google Scholar 

  • Younghee K (2001) Effects of BA, NAA, 2, 4-D and AgNO3 treatments on callus induction and shoot regeneration from hypocotyl and cotyledon of sesame (Sesamum indicum L.). J Kor Soc Hortic Sci 42:70–74

    Google Scholar 

  • Yu K, Li R, Hatanaka T, Hildebrand D (2008) Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry 69:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Yukawa Y, Takaiwa F, Shoji K, Masuda K, Yamada K (1996) Structure and expression of two seed-specific cDNA clones encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum L. Plant Cell Physiol 37:201–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Sun J, Zhang XR, Wang LH, Che Z (2011) Analysis on genetic diversity and genetic basis of the main sesame cultivars released in China. Agric Sci China 10:509–518

    Article  CAS  Google Scholar 

  • Zheng ZF, Uchacz TM, Taylor JL (2001) Isolation and characterization of novel defence-related genes induced by copper, salicylic acid, methyl jasmonate, abscisic acid and pathogen infection in Brassica carinata. Mol Plant Pathol 2:159–169

    Article  PubMed  CAS  Google Scholar 

  • Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159:3123–3128

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tiwari, S., Kumar, S. (2013). Neglected Oil Crop Biotechnology. In: Jain, S., Dutta Gupta, S. (eds) Biotechnology of Neglected and Underutilized Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5500-0_7

Download citation

Publish with us

Policies and ethics