Skip to main content

Algal Lipids and Their Metabolism

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Algae exhibit superior attributes to terrestrial crop plants as bioenergy sources. Many algae accumulate substantial amounts of non-polar lipids, mostly in the form of triacylglycerols or hydrocarbons, and these levels may reach up to 20–50 % of dry cell weight. These oleaginous species have been considered as promising sources of oil for biofuels, such as surrogates of gasoline, kerosene and diesel. In spite of several technical limitations associated with existing technologies in the production of economically-viable algal oil, further research in this area is needed and such studies will clearly benefit from a better understanding of lipid metabolism and accumulation in algal cells. At present, relatively little information is available on lipid biosynthesis and its regulation in algae. Moreover, the lack of information about control mechanisms for the lipid synthesis in different algal species limits our attempts to manipulate lipid metabolism in algae. However, some promising achievements in genetic and metabolic manipulations in higher plants are useful examples/directions to follow. In the present chapter we give an overview of lipid composition and lipid metabolism in algae with a special emphasis on the production of algal oils and/or their metabolism for biofuel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2004) Production of lipids rich in omega-3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology 3:102–108

    Google Scholar 

  • Adlerstein D, Bigogno C, Khozin I, Cohen Z (1997) The effect of growth temperature and culture density on the molecular species composition of the galactolipids in the red microalga Porphyridium cruentum (Rhodophyta). J Phycol 33:975–979

    CAS  Google Scholar 

  • Alban C, Baldet P, Douce R (1994) Localisation and characterisation of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxylphenoxypropionate herbicides. Biochem J 300:557–565

    CAS  Google Scholar 

  • Al-Fadhli A, Wahidulla S, D’Souza L (2006) Glycolipids from the red alga Chondria armata (Kütz.) Okamura. Glycobiology 16:902–915

    CAS  Google Scholar 

  • Alonso DL, Belarbi E-H, Rodriguez-Ruiz J, Segura CI, Gimenez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481

    Google Scholar 

  • Alonso DL, Belarbi E-H, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous cultures of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    CAS  Google Scholar 

  • Andersen RJ, Taglialatela-Scafati O (2005) Avrainvilloside, a 6-deoxy-6-aminoglucoglycerolipid from the Greek alga Avrainvillea nigricans. J Nat Prod 68:1428–1430

    CAS  Google Scholar 

  • Anderson R, Livermore BP, Kates M, Volcani BE (1978a) The lipid composition of the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta 528:77–88

    CAS  Google Scholar 

  • Anderson R, Kates M, Volcani BE (1978b) Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta 528:89–106

    CAS  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    CAS  Google Scholar 

  • Arisz SA, van Himbergen JAJ, Musgrave A, van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270

    CAS  Google Scholar 

  • Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    CAS  Google Scholar 

  • Baba M, Kikuta F, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour Technol 109:266–270

    Google Scholar 

  • Benning C, Huang ZH, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in the cells of Rhodobacter sphaeroides. Arch Biochem Biophys 317:103–111

    CAS  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002a) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    CAS  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Cohen Z (2002b) Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Phytochemistry 60:135–143

    CAS  Google Scholar 

  • Bisseret P, Ito S, Tremblay P-A, Volcani BE, Dessort D, Kates M (1984) Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine in some diatoms and algae. Biochim Biophys Acta 796:320–327

    CAS  Google Scholar 

  • Blouin A, Lavezzi T, Moore TS (2003) Membrane lipid biosynthesis in Chlamydomonas reinhardtii. Partial characterization of CDP-diacylglycerol:myo-inositol 3-phosphatidyltransferase. Plant Physiol Biochem 41:11–16

    CAS  Google Scholar 

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonata. J Phycol 32:64–73

    CAS  Google Scholar 

  • Browse J, Somerville CR (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    CAS  Google Scholar 

  • Chappell J (2009) Defining the biological origins of petroleum reserves and oil shales: the biochemical wizardry of Botryococcus braunii. International seminar on algal biofuel, Antofagasta, Chile, 7–8 October 2009

    Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    CAS  Google Scholar 

  • Cho SH, Thompson GA Jr (1987) On the metabolic relationships between monogalactosyldiacylglycerol and digalactosyldiacylglycerol molecular species in Dunaliella salina. J Biol Chem 262:7586–7593

    CAS  Google Scholar 

  • D’Ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A et al (2004) The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys Acta 1686:100–107

    Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51

    CAS  Google Scholar 

  • Domonkos I, Laczkó-Dobos H, Gombos Z (2008) Lipid-assisted protein–protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res 47:422–435

    CAS  Google Scholar 

  • Dörmann P (2005) Membrane lipids. In: Murphy DJ (ed) Plant lipids. Biology, utilisation and manipulation. Blackwell, Oxford, pp 123–161

    Google Scholar 

  • Dubertret G, Gerard-Hirne C, Tremolieres A (2002) Importance of trans-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Physiol Biochem 40:829–836

    CAS  Google Scholar 

  • Eccleston VS, Harwood JL (1995) Solubilisation, partial purification and properties of acyl-CoA;glycerol-3-phosphate acyltransferase from avocado (Persea americana) fruit mesocarp. BBA 1257:1–10

    Google Scholar 

  • Eichenberger W, Gribi C (1994) Diacylglyceryl-α-D-glucuronide from Ochromonas danica (Chrysophyceae). Plant Physiol 124:272–276

    Google Scholar 

  • Eichenberger W, Gribi C (1997) Lipids of Pavlova lutheri: cellular site and metabolic role of DGCC. Phytochemistry 45:1561–1567

    CAS  Google Scholar 

  • Eichenberger W, Bigler P, Gfeller H, Gribi C, Schmid CE (1995) Phosphatidyl-O-[N-(2-hydroxyethyl)glycine](PHEG), a new glycerophospholipid from brown algae (Phaeophyceae). Plant Physiol 146:398–404

    CAS  Google Scholar 

  • El Maanni A, Dubertret G, Delrieu M-J, Roche O, Tremolieres A (1998) Mutants of Chlamydomonas reinhardtii affected in phosphatidylglycerol metabolism and thylakoid biogenesis. Plant Physiol Biochem 36:605–619

    Google Scholar 

  • El-Sheek MM, Rady AA (1995) Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 35:139–151

    CAS  Google Scholar 

  • Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantification from the green microalgae Botryococcus braunii var. Showa. Bioresour Technol 101:2359–2366

    CAS  Google Scholar 

  • Fabregas J, Maseda A, Dominquez A, Otero A (2004) The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture. World J Microbiol Biotechnol 20:31–35

    CAS  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991

    CAS  Google Scholar 

  • Giroud C, Geber A, Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29:587–595

    CAS  Google Scholar 

  • Gladu PK, Patterson GW, Wikfors GH, Smith BC (1995) Sterol, fatty acids, and pigment characteristics of UTEX 2341, a marine eustigmatophyte identified previously as Chlorella minutissima (Chlorophyceae). J Phycol 31:774–777

    CAS  Google Scholar 

  • Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX#1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79

    CAS  Google Scholar 

  • Guihéneuf F, Leu S, Zarka A, Khozin-Goldberg I, Khalilov I, Boussiba S (2011) Cloning and molecular characterization of a novel acyl-CoA:diacylglycerol acyltransferase 1-like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum. FEBS J 278:3651–3666

    Google Scholar 

  • Gunstone FD, Harwood JL, Dijkstra AJ (eds) (2007) The lipid handbook, 3rd edn. Taylor & Francis, Boca Raton, 791 pp

    Google Scholar 

  • Gurr MI, Harwood JL, Frayn KN (2002) Lipid biochemistry. An introduction, 5th edn. Blackwell, Oxford, 320 pp

    Google Scholar 

  • Guschina IA, Harwood JL (2006a) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006b) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580:5477–5483

    CAS  Google Scholar 

  • Guschina IA, Harwood JL (2007) Complex lipid biosynthesis and its manipulation in plants. In: Ranalli P (ed) Improvement of crop plants for industrial end use. Springer, Dordrecht, pp 253–279

    Google Scholar 

  • Guschina IA, Harwood JL (2008) Chemical diversity of lipids. In: Wiley encyclopedia of chemical biology. Wiley, Hoboken, pp 1–31

    Google Scholar 

  • Guschina IA, Harwood JL (2009a) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Google Scholar 

  • Guschina IA, Harwood JL (2009b) Algal lipids and effect of the environment on their biochemistry. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, New York, pp 1–24

    Google Scholar 

  • Guschina IA, Dobson G, Harwood JL (2003) Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 64:209–217

    CAS  Google Scholar 

  • Haigh WG, Yoder TF, Ericson L, Pratum T, Winget RR (1996) The characterisation and cyclic production of highly unsaturated homoserine lipid in Chlorella minutissima. Biochim Biophys Acta 1299:183–190

    Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids following phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56

    Google Scholar 

  • Harwood JL (1998a) Membrane lipids in algae. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 53–64

    Google Scholar 

  • Harwood JL (1998b) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 287–302

    Google Scholar 

  • Harwood JL, Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 16:1–53

    CAS  Google Scholar 

  • Harwood JL, Okanenko AA (2003) Sulphoquinovosyl diacylglycerol – the sulpholipid of higher plants. In: Abrol YP, Ahmad A (eds) Sulfur in plants. Kluwer, Dordrecht, pp 189–219

    Google Scholar 

  • Harwood JL, Pettitt TP, Jones AL (1988) Lipid metabolism. In: Rogers LJ, Gallon JR (eds) Biochemistry of the Algae and Cyanobacteria. Clarendon, Oxford, pp 49–67

    Google Scholar 

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seiberg M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  Google Scholar 

  • Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 40:651–654

    CAS  Google Scholar 

  • John U, Tillmann U, Medlin LK (2002) A comparative approach to study inhibition of grazing and lipid composition of a toxic and non-toxic clone of Chrysochromulina polylepis (Prymnesiophyceae). Harmful Algae 1:45–57

    CAS  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional roles. Prog Lipid Res 46:56–87

    CAS  Google Scholar 

  • Jouhet J, Marechal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55

    CAS  Google Scholar 

  • Kato M, Sakai M, Adachi K, Ikemoto H, Sano H (1996) Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345

    CAS  Google Scholar 

  • Keusgen M, Curtis JM, Thibault P, Walter JA, Windust A, Ayer SW (1997) Sulfoquinovosyl diacylglycerols from the alga Heterosigma carterae. Lipids 32:1101–1112

    CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2004) Effect of solar irradiance on lipids of green alga Ulva fenestrata Postels et Ruprecht. Bot Mar 47:395–401

    CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79

    CAS  Google Scholar 

  • Khozin I, Adlerstein D, Bigogno C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of eicisapentaenoic acid in the microalga Porphyridium cruentum. II. Studies with radiolabeled precursors. Plant Physiol 114:223–230

    CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    CAS  Google Scholar 

  • Khozin-Goldberg I, Yu HZ, Adlerstein D, Didi-Cohen S, Heimer YM, Cohen Z (2000) Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35:881–889

    CAS  Google Scholar 

  • Khozin-Goldberg I, Shrestha P, Cohen Z (2005) Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochim Biophys Acta 1738:63–71

    CAS  Google Scholar 

  • Laureillard J, Largeau C, Casadevall E (1988) Oleic acid in the biosynthesis of the resistant biopolymers of Botryococcus braunii. Phytochemistry 27:2095–2098

    CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    CAS  Google Scholar 

  • Li R, Yu K, Hildebrand DF (2010a) DGAT1, DGAT2, and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45:145–157

    Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010b) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic conditions. Biotechnol Lett 31:1043–1049

    CAS  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    CAS  Google Scholar 

  • Lu C, Xin Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc Natl Acad Sci USA 106:18837–18842

    CAS  Google Scholar 

  • Lung S-C, Weselake RJ (2006) Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41:1073–1088

    CAS  Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36:510–522

    CAS  Google Scholar 

  • Makewicz A, Gribi C, Eichenberger W (1997) Lipids of Ectocarpus fasciculatus (Phaeophyceae). Incorporation of [1-14C]oleate and the role of TAG and MGDG in lipid metabolism. Plant Cell Physiol 38:952–960

    CAS  Google Scholar 

  • Manaf AM, Harwood JL (2000) Purification and characterisation of acyl-CoA:glycerol 3-phosphate acyltransferase from oil palm (Elaeis guineensis) tissues. Planta 210:318–328

    CAS  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    CAS  Google Scholar 

  • Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T (2009) Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 towards biofuel production. Biotechnol Lett 31:1367–1372

    CAS  Google Scholar 

  • McLarnon-Riches CJ, Rolph CE, Greenway DLA, Robinson PK (1998) Effects of environmental factors and metals on Selenastrum capricornutum. Phytochemistry 49:1241–1247

    CAS  Google Scholar 

  • Metzger P, Casadevall E (1991) Botryococcoid ethers, ether lipids from Botryococcus braunii. Phytochemistry 30:1439–1444

    CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  Google Scholar 

  • Moore TS, Du Z, Chen Z (2001) Membrane lipid biosynthesis in Chlamydomonas reinhardtii. In vitro biosynthesis of diacylglyceryltrimethylhomoserine. Plant Physiol 125:423–429

    CAS  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    CAS  Google Scholar 

  • Muradyan EA, Klyachko-Gurvich GL, Tsoglin LN, Sergeyenko TV, Pronina NA (2004) Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration. Russ J Plant Physiol 51:53–62

    CAS  Google Scholar 

  • Murata N, Siegenthaler P-A (1998) Lipids in photosynthesis: an overview. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 1–20

    Google Scholar 

  • Napolitano GE (1994) The relationship of lipid with light and chlorophyll measurement in freshwater algae and periphyton. J Phycol 30:943–950

    CAS  Google Scholar 

  • Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. PNAS 108:12260–12265

    Google Scholar 

  • Oh SH, Han JG, Kim Y, Ha JH, Kim SS et al (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. Jpn J Biosci Bioeng 108:429–434

    CAS  Google Scholar 

  • Okada S, Chappell J, Devarenne TP (2000) Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 373:307–317

    CAS  Google Scholar 

  • Okada S, Devarenne TP, Murakami M, Abe H, Chappell J (2004) Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, Race B. Arch Biochem Biophys 422:110–118

    CAS  Google Scholar 

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL Jr, Inomata H (2009) Fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, in the presence of inorganic carbon and nitrate. Bioresour Technol 100:5237–5242

    CAS  Google Scholar 

  • Page RA, Okada S, Harwood JL (1994) Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochim Biophys Acta 1210:369–372

    CAS  Google Scholar 

  • Pineau B, Girard-Bascou J, Eberhad S, Choquet Y, Tremolieres A, Gerard-Hirne C et al (2004) A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. Eur J Biochem 271:329–338

    CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    CAS  Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007a) Effects of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    CAS  Google Scholar 

  • Rao R, Sarada R, Ravishankar GA (2007b) Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17:414–419

    CAS  Google Scholar 

  • Regnault A, Chevrin D, Chammai A, Piton F, Calvayrac R, Mazliak P (1995) Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40:725–733

    CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–977

    CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effects of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    CAS  Google Scholar 

  • Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4:242–252

    CAS  Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseed. Plant Physiol 113:75–81

    CAS  Google Scholar 

  • Roessler PG (1990) Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92:73–78

    CAS  Google Scholar 

  • Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem 268:19254–19259

    CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    CAS  Google Scholar 

  • Sato N, Sonoike K, Kawaguchi A, Tsuzuki M (1996) Contribution of lowered unsaturation levels of chloroplast lipids to high temperature tolerance of photosynthesis in Chlamydomonas reinhardtii. J Photochem Photobiol B 36:333–337

    CAS  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. In: Harwood JL, Quinn PJ (eds) Recent advances in the biochemistry of plant lipids. Portland Press Ltd, London, pp 912–914

    Google Scholar 

  • Sato N, Aoki M, Maru Y, Sonoike K, Minoda A, Tsuzuki M (2003a) Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II. Planta 217:245–251

    CAS  Google Scholar 

  • Sato N, Tsuzuki M, Kawaguchi A (2003b) Glycerolipid synthesis in Chlorella kessleri 11h I. Existence of a eukaryotic pathway. Biochim Biophys Acta 1633:27–34

    CAS  Google Scholar 

  • Sato N, Tsuzuki M, Kawaguchi A (2003c) Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of CO2 concentration during growth. Biochim Biophys Acta 1633:35–42

    CAS  Google Scholar 

  • Singh Y, Kumar HD (1992) Lipid and hydrocarbon production by Botryococcus spp. under nitrogen limitation and anaerobiosis. World J Microbiol Biotechnol 8:121–124

    CAS  Google Scholar 

  • Son BW (1990) Glycolipids from Gracilaria verrucosa. Phytochemistry 29:307–309

    CAS  Google Scholar 

  • Stobart K, Mancha M, Lenman M, Dahlqvist A, Stymne S (1997) Triacylglycerols are synthesised and utilized by transacylation reactions in microsomal preparations of developing safflower (Carthamus tinctorius) seeds. Planta 203:58–66

    CAS  Google Scholar 

  • Sukenik A, Livne A (1991) Variations in lipid and fatty acid content in relation to acetyl-CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol 32:371–378

    CAS  Google Scholar 

  • Sukenik A, Yamaguchi Y, Livne A (1993) Alterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis sp. J Phycol 29:620–626

    CAS  Google Scholar 

  • Sushchik NN, Kalacheva GS, Zhila NO, Gladyshev MI, Volova TG (2003) A temperature dependence of the intra- and extracellular fatty acid composition of green algae and cyanobacterium. Russ J Plant Physiol 50:374–380

    CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglycerols in marine microalgae Dunaliella cells. J Biosci Bioeng 3:223–226

    Google Scholar 

  • Tanoi T, Kawachi M, Watanabe MM (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23:25–33

    CAS  Google Scholar 

  • Tatsuzawa H, Takizawa E (1995) Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry 40:397–400

    CAS  Google Scholar 

  • Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J Phycol 32:598–601

    CAS  Google Scholar 

  • Templier J, Largeau C, Casadevall E (1984) Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry 23:1017–1028

    CAS  Google Scholar 

  • Thompson GAJ (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Google Scholar 

  • Tremolieres A, Siegenthaler P-A (1998) Role of acyl lipids in the function of photosynthetic membranes in higher plants. In: Siegenthaler P-A, Murata N (eds) In lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 145–173

    Google Scholar 

  • Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (Race A). Phytochemistry 30:2919–2925

    CAS  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52:335–361

    CAS  Google Scholar 

  • Wada H, Murata N (2010) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, 474 pp

    Google Scholar 

  • Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 48:407–416

    CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    CAS  Google Scholar 

  • Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang S-T (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36:1383–1389

    CAS  Google Scholar 

  • Weselake RL, Shah S, Tang M, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu W, Taylor DC, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot 59:3543–3549

    CAS  Google Scholar 

  • Weselake RJ, Taylor DC, Rahman H, Laroche A, McVetty PBE, Harwood JL (2009) Increasing the flow of carbon into seed oil. Biotechnol Adv 27:866–878

    CAS  Google Scholar 

  • Xin L, Hong-ying H, Yin-hu W (2010) Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1. Bioresour Technol 101:9819–9821

    Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    CAS  Google Scholar 

  • Xu J, Zheng Z, Zou J (2009) A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipids. Botany 87:544–551

    CAS  Google Scholar 

  • Yonezawa N, Matsuura H, Shiho M, Kaya K, Watanabe MM (2012) Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Bioresour Technol 109:304–307

    Google Scholar 

  • Zhu CJ, Lee YK, Chao TM (1997) Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J Appl Phycol 9:451–457

    CAS  Google Scholar 

Download references

Acknowledgement

Recent research in the authors’ laboratory has been supported financially by grants from the BBSRC, DuPont, NERC, the Royal Society and Syngenta for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Guschina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guschina, I.A., Harwood, J.L. (2013). Algal Lipids and Their Metabolism. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_2

Download citation

Publish with us

Policies and ethics