Skip to main content

Techno-Economic Modeling for Biofuels from Microalgae

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Techno-economic modeling is a valuable and widely used process for guiding research and development efforts in order to achieve an economically viable outcome. In the case of algal biofuels, techno-economic modeling can be used and to provide important information on the best path to commercialization and to provide an estimate of the cost of biofuel production. These models integrate complex technical and economic information for a given process or processes. Techno-economic modeling can be used the evaluate and compare alternate processes, to help in defining the project scale and scope for economic value, measure uncertainty of project technical and financial risks, for the assessment of the sensitivity to changes in prices/efficiencies on project worth, for the economic evaluation of project worth, and for the calculation of expected returns and risks to capital investment. This chapter introduces and describes the process of techno-economic modeling and how the findings of this modeling can be used. Some of the key findings of the many models which have been published to date and their limitations are considered within the context of how the cost of production of biofuels from microalgae can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Project worth as measured by the return on investment (ROI), the internal rate of return (IRR) and/or the net present value (NPV) – see definitions at end of this chapter.

References

  • Adey WH, Kangas PC, Mulbry W (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience 61:434–441

    Article  Google Scholar 

  • Beal CM, Hebner RE, Webber ME, Ruoff RS, Seibert AF (2012) The energy return on investment for algal biocrude: results for a research production facility. Bioenergy Res 5:341–362

    Article  Google Scholar 

  • Becker EW, Venkataraman LV (1980) Production and processing of algae in pilot plant scale. Experiences of the Indo-German project. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 35–50

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. US Department of Energy, Pittsburgh, pp 1–201

    Book  Google Scholar 

  • Borowitzka MA (1988a) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Borowitzka MA (1988b) Vitamins and fine chemicals. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes: matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999a) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999b) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Borowitzka MA (1999c) Pharmaceuticals and agrochemicals from microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 313–352

    Google Scholar 

  • Borowitzka MA (2010) Carotenoid production using microalgae. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 225–240

    Google Scholar 

  • Borowitzka MA, Boruff BJ, Moheimani NR, Pauli N, Cao Y, Smith H (2012) Identification of the optimum sites for industrial;-scale microalgae biofuel production in WA using a GIS model. Report prepared for the Centre for Research into Energy for Sustainable Transport (CREST), 35 pp. http://www.murdoch.edu.au/_document/News/CRST-AlgaeBiofuelsGIS-FinalReportt.pdf

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 1–13. doi:10.1009/s11027-010-9271-9

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors. Aquaculture 72:247–253

    Article  Google Scholar 

  • Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067

    Article  CAS  Google Scholar 

  • Brune H, Walz OP (1978) Studies on some nutritive effects of the green alga Scenedesmus acutus with pigs and broilers. Arch Hydrobiol Ergebn Limnol 11:79–88

    Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  CAS  Google Scholar 

  • Cartens M, Molina-Grima E, Robles-Medina A, Giminez Giminez A, Ibanez Gonzalez J (1996) Eicosapentaenoic acid (20:5n-3) from the marine microalgae Phaeodactylum tricornutum. JAOCS 73:1025–1031

    Article  CAS  Google Scholar 

  • Chowdhury SA, Huque KS, Khatun M (1995) Algae in animal production. Agricultural science of biodiversity and sustainability workshop, Tune Landboskole, Denmark, April 3–7, pp 181–191

    Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325

    Article  CAS  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos P (2011) Techno-economic analysis of microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • De Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focussed on energy consumption. J Appl Phycol doi:10.1007/s10811-012-9835-z

  • Del Campo JA, Rodríguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    Article  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuels. Energy Convers Manag 51:2738–2749

    Article  CAS  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization by phytoplankton. Plant Cell Physiol 27:1335–1349

    CAS  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z, Wyman K (1985) Growth-irradiance relationships in phytoplankton. Limnol Oceanogr 30:311–321

    Article  CAS  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR (2011) Production of biofuels from microalgae. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-011-9294-x

  • Fulks W, Main KL (1991) Rotifer and microalgae culture systems. The Oceanic Institute, Honolulu, pp 1–364

    Google Scholar 

  • Gellenbeck KW (2012) Utilization of algal materials for nutraceutical and cosmetaceutical applications – what do manufacturers need to know? J Appl Phycol 24:309–313

    Google Scholar 

  • Goldman JC (1979) Outdoor algal mass cultures. II. Photosynthesis yield limitations. Water Res 13:119–160

    Article  CAS  Google Scholar 

  • Gozález JA, Calbó J (2002) Modelled and measured ratio of PAR to global radiation under cloudless skies. Agric For Meteorol 110:319–325

    Article  Google Scholar 

  • Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85:118–123

    Article  CAS  Google Scholar 

  • Handy ST (2003) Greener solvents: room temperature ionic liquids from biorenewable sources. Chem Eur J 9:2938–2944

    Article  CAS  Google Scholar 

  • Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89:157–163

    Article  CAS  Google Scholar 

  • Herrero C, Abalde J, Fabregas J (1993) Nutritional properties of four marine microalgae for albino rats. J Appl Phycol 5:573–580

    Article  Google Scholar 

  • Herrero M, Cifuentes A, Ibanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98:136–148

    Article  CAS  Google Scholar 

  • Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608

    Article  Google Scholar 

  • International Energy Agency (2010) Projected cost of generating electricity. IEA/OECD, Paris

    Google Scholar 

  • Jassby A (1988) Spirulina: a model for microalgae as human food. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 149–179

    Google Scholar 

  • Jorquera O, Kiperstock A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kanel JS, Guelcher SA (1999) Method for rupturing microalgae cells. USA Patent 6000551 (14 December 1999)

    Google Scholar 

  • Kawaguchi K (1980) Microalgae production systems in Asia. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 25–33

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. JAOCS 83:823–833

    Article  CAS  Google Scholar 

  • Laws EA, Terry KL, Wickman J, Chalup MS (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2335

    Article  CAS  Google Scholar 

  • Lee JY, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S71–S74

    Article  Google Scholar 

  • Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuel 24:5235–5243

    Article  CAS  Google Scholar 

  • Lipstein B, Hurwitz S (1980) The nutritional value of algae for poultry. Dried Chlorella in broiler diets. Br Poult Sci 21:9–21

    Article  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, Berkeley, pp 1–153

    Google Scholar 

  • Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto T (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51/52:681–692

    Article  Google Scholar 

  • Miao XL, Wu QY (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 395–414

    Google Scholar 

  • Mohn FH, Cordero-Contreras O (1990) Harvesting of the alga Dunaliella – some consideration concerning its cultivation and impact on the production costs of ß-carotene. Berichte des Forschungszentrums Jülich 2438:1–50

    Google Scholar 

  • Molina Grima E, Garcia Camacho F, Sanchez Perez JA, Acién Fernández FG, Fernandez Sevilla JM (1997) Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme Microb Technol 21:375–381

    Article  Google Scholar 

  • Molina Grima E, Belarbi EH, Ácién Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Molina Grima E, Acién Fernández FG, Robles Medina A (2004) Downstream processing of cell-mass and products. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 215–251

    Google Scholar 

  • Moraine R, Shelef G, Sandbank E, Bar-Moshe Z, Shvartzbund A (1980) Recovery of sewage-borne algae: flocculation, flotation, and centrifugation techniques. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam, pp 531–545

    Google Scholar 

  • Moreno J, Vargas MA, Rodriguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20:191–197

    Article  CAS  Google Scholar 

  • Mulder K, Hagens N, Fisher B (2010) Burning water: a comparative analysis of the energy return on water used. Ambio 39:30–39

    Article  CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24/25:355–361

    Article  Google Scholar 

  • Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Peng WM, Wu QY (2000) Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12:147–152

    Article  CAS  Google Scholar 

  • Pernet F, Tremblay R (2003) Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids 38:1191–1195

    Article  CAS  Google Scholar 

  • Phan L, Brown H, White J, Hodgson A, Jessop PG (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59

    Article  CAS  Google Scholar 

  • Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119

    Article  Google Scholar 

  • Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  CAS  Google Scholar 

  • Rebeller M (1982) Techniques de culture et de récolte des algues spirulines. Doc IFP 1–14

    Google Scholar 

  • Richardson JW, Outlaw JL, Allison M (2010) The economics of microalgae oil. AgBioForum 13:119–130

    Google Scholar 

  • Rösch C, Skarka J, Wegerer N (2012) Materials flow modeling of nutrient recycling in biodiesel production from microalgae. Bioresour Technol 107:191–199

    Article  Google Scholar 

  • Ross E, Dominy W (1990) The nutritional value of dehydrated, blue-green algae (Spirulina platensis) for poultry. Poult Sci 69:794–800

    Article  CAS  Google Scholar 

  • Samori C, Torri C, Samori G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol 101:3274–3279

    Article  CAS  Google Scholar 

  • Sasa T, Morimura Y, Tamiya H (1955) Seasonal variation of growth rate of various strains of unicellular algae under natural light- and temperature-conditions. J Gen Appl Microbiol 1:183–189

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory, Golden, Colorado. NREL/TP-580-24190, pp 1–328

    Google Scholar 

  • Shelef G (1974) Process and apparatus for sewage treatment and wastewater reclamation. Great Britain Patent GB1358244

    Google Scholar 

  • Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 97–113

    Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nature Biotechnol 28:126–128

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift ­tubular bioreactors. Energy Fuel 24:4062–4077

    Article  CAS  Google Scholar 

  • Sukenik A, Levy RS, Levy Y, Falkowski PG, Dubinsky Z (1991) Optimizing algal biomass production in an outdoor pond – a simulation model. J Appl Phycol 3:191–201

    Article  Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–344

    Article  CAS  Google Scholar 

  • Tanticharoen M, Bunnag B, Vonshak A (1993) Cultivation of Spirulina using secondary treated starch wastewater. Australas Biotechnol 3:223–226

    Google Scholar 

  • Tapie P, Bernard A (1988) Microalgae production: technical and economic evaluations. Biotechnol Bioeng 32:873–885

    Article  CAS  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy and feasibility. J Appl Phycol 21:508–517

    Article  Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenergy Res 3:204–213

    Article  Google Scholar 

  • Xu R, Mi Y (2010) Simplifying the process on microalgal biodiesel production through in situ transesterification technology. JAOCS 88:91–99

    Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrient balance. Bioresour Technol 102:159–165

    Article  CAS  Google Scholar 

  • Yap TN, Wu JF, Pond WG, Krook L (1982) Feasibility of feeding Spirulina maxima, or Chlorella sp. to pigs weaned to a dry diet at 4 to 8 days of age. Nutr Rep Int 25:543–552

    Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158

    Article  CAS  Google Scholar 

  • Zemke PE, Wood BD, Dye DJ (2010) Considerations for the maximum production rates of triacylglycerol from microalgae. Biomass Bioenergy 34:145–151

    Article  CAS  Google Scholar 

  • Zijffers J-WF, Schippers KJ, Zheng K, Janssen M, Tramper J, Wijffels RH (2010) Maximum photosynthetic yield of green microalgae in photobioreactors. Mar Biotechnol 12:708–718

    Article  CAS  Google Scholar 

  • Zmora O, Richmond A (2004) Microalgae for aquaculture. Microalgae production for aquaculture. In: Richmond A (ed) Microalgal culture: Biotechnology and applied phycology. Blackwell Science, Oxford, pp 365–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borowitzka, M.A. (2013). Techno-Economic Modeling for Biofuels from Microalgae. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_15

Download citation

Publish with us

Policies and ethics