Skip to main content

Production and Properties of Biodiesel from Algal Oils

  • Chapter
  • First Online:

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Biodiesel is defined as the mono-alkyl esters of vegetable oils or animal fats or other materials composed of triacylglycerols. This chapter discusses the potential fuel properties of biodiesel derived from algal oils. Since little to no experimental data are available, the potential properties need to be estimated from existing data for neat biodiesel components and biodiesel fuels derived from other feedstocks. This approach shows that many algal biodiesel fuels would likely possess problematic cold flow and/or oxidative stability properties due to the relatively high content of polyunsaturated fatty acids and/ or saturated fatty acids in algal oils, although there are some exceptions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813

    Article  Google Scholar 

  • Akoh CC, Chang S-W, Lee G-C, Shaw J-F (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005

    Article  CAS  Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Bioref 1:57–66

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  Google Scholar 

  • Behzadi S, Farid MM (2007) Review: examining the use of different feedstock for the production of biodiesel. Asia-Pac J Chem Eng 2:480–486

    Article  CAS  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  CAS  Google Scholar 

  • Bondioli P (2004) The preparation of fatty acid esters by means of catalytic reactions. Top Catal 27:77–82

    Article  CAS  Google Scholar 

  • Bondioli P, Cortesi N, Mariani C (2008) Identification and quantification of steryl glucosides in biodiesel. Eur J Lipid Sci Technol 110:120–126

    Article  CAS  Google Scholar 

  • Bravi E, Perretti G, Montanari L (2006) Fatty acids by high-performance liquid chromatography and evaporative light-scattering detector. J Chromatogr A 1134:210–214

    Article  CAS  Google Scholar 

  • Canakci M, Van Gerpen J (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210

    CAS  Google Scholar 

  • Chen G-Q, Jiang Y, Chen F (2008) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94

    Article  CAS  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuel 23:4166–4173

    Article  CAS  Google Scholar 

  • Chiou B-S, El-Mashad HM, Avena Bustillos RJ, Dunn RO, Bechtel PJ, McHugh TH, Imam SH, Glenn GM, Orts WJ, Zhang R (2008) Biodiesel from waste Salmon oil. Trans ASABE 51:797–802

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  Google Scholar 

  • Delaunay F, Marty Y, Moal J, Samain J-F (1993) The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J Exp Mar Biol Ecol 173:163–179

    Article  CAS  Google Scholar 

  • Di Serio M, Tesser R, Pengmei L, Santacesaria E (2008) Heterogeneous catalysts for biodiesel production. Energy Fuel 22:207–217

    Article  Google Scholar 

  • Douglas AG, Douraghi-Zadeh K, Eglinton G (1969) The fatty acids of the alga Botryococcus braunii. Phytochemistry 8:285–293

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231

    Article  Google Scholar 

  • Dunn RO (2008) Antioxidants for improving storage stability of biodiesel. Biofuels, Bioprod Biorefin 2:304–318

    Article  CAS  Google Scholar 

  • European Biodiesel Board, Brussels, Belgium. http://www.ebb-eu.org

  • Evans RW, Kates M, Ginzburg M, Ginzburg B-Z (1982) Lipid composition of halotolerant algae, Dunaliella parva lerche and Dunaliella tertiolecta. Biochim Biophys Acta Lipid Lipid Metab 712:186–195

    Article  CAS  Google Scholar 

  • Fan K-W, Jiang Y, Faan Y-W, Chen F (2007) Lipid characterization of mangrove thraustochytrid – Schizochytrium mangovei. J Agric Food Chem 55:2906–2910

    Article  CAS  Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotech Bioeng 102:1298–1315

    Article  CAS  Google Scholar 

  • Frankel EN (2005) Lipid oxidation, 2nd edn. The Oily Press/PJ Barnes and Associates, Bridgewater

    Book  Google Scholar 

  • Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    CAS  Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Phytochemistry 87:756–761

    CAS  Google Scholar 

  • Gutsche B (1997) Technology of methyl ester production and its application to biofuels (Technologie der Methylesterherstellung – Anwendung für die Biodieselproduktion). Fett – Lipid 99:418–427

    Article  CAS  Google Scholar 

  • Haas MJ, Wagner K (2011) Simplifying biodiesel production: the direct or in situ transesterification of algal biomass. Eur J Lipid Sci Technol 113:1219–1229

    Article  CAS  Google Scholar 

  • Haas MH, Piazza GJ, Foglia TA (2002) Enzymatic approaches to the production of biodiesel fuels. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New York/Basel, pp 587–598

    Google Scholar 

  • Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J (2009a) Technologies for production of biodiesel focusing on green catalytic techniques. Fuel Process Technol 90:1502–1514

    Article  CAS  Google Scholar 

  • Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009b) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A 363:1–10

    Article  CAS  Google Scholar 

  • Hoydonckx HE, De Vos DE, Chavan SA, Jacobs PA (2004) Esterification and transesterification of renewable chemicals. Top Catal 27:83–96

    Article  CAS  Google Scholar 

  • Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  • Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109:827–834

    CAS  Google Scholar 

  • Knothe G (2002) Structure indices in FA chemistry. How relevant is the iodine value. J Am Oil Chem Soc 79:847–854

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2010a) Biodiesel and renewable diesel. A comparison. Prog Energy Combust 36:364–373

    Article  CAS  Google Scholar 

  • Knothe G (2010b) Biodiesel derived from a model oil enriched in palmitoleic acid, Macadamia nut oil. Energy Fuel 24:2098–2103

    Article  CAS  Google Scholar 

  • Knothe G, Dunn RO (2009) A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc 86:843–856

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2005a) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2005b) Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy Fuel 19:1192–1200

    Article  CAS  Google Scholar 

  • Knothe G, Matheaus AC, Ryan TW III (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–975

    Article  CAS  Google Scholar 

  • Knothe G, Sharp CA, Ryan TW III (2006) Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy Fuel 20:403–408

    Article  CAS  Google Scholar 

  • Knothe G, Van Gerpen J, Krahl J (eds) (2010) The biodiesel handbook, 2nd edn. AOCS Press, Urbana

    Google Scholar 

  • Ladommatos N, Parsi M, Knowles A (1996) The effect of fuel cetane improver on diesel pollutant emissions. Fuel 75:8–14

    Article  CAS  Google Scholar 

  • Lee I, Johnson LA, Hammond EG (1995) Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J Am Oil Chem Soc 72:1155–1160

    Article  CAS  Google Scholar 

  • Lee D-W, Park Y-M, Lee K-W (2009a) Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal Surv Asia 13:63–77

    Article  CAS  Google Scholar 

  • Lee C-G, Kwon J-S, Kim E-S (2009b) Biodiesel production from marine microalga, Dunaliella tertiolecta, Tetraselmis chui and Nannochloris oculata. J Biosci Bioeng 108:S130–S131

    Article  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  Google Scholar 

  • Liu J-g, Cohen Z, Richmond A (2002) Fatty acids profile in a high cell density culture of arachidonic acid-rich Parietochloris incisa (Trebouxiophyceae, chlorophyta) exposed to high PFD. Chin J Oceanol Limnol 20:149–156

    Article  CAS  Google Scholar 

  • López Alonso D, Molina Grima E, Sánchez Pérez JA, García Sánchez JL, Garcia Camacho F (1992) Isolation of clones of Isochrysis galbana rich in eicosapentaenoic acid. Aquaculture 102:363–371

    Article  Google Scholar 

  • López Alonso D, Belarbi E-H, Rodríguez-Ruiz J, Segura CI, Giménez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481

    Article  Google Scholar 

  • Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363

    Article  CAS  Google Scholar 

  • Lotero E, Goodwin JG Jr, Bruce DA, Suwannakarn K, Liu Y, Lopez DE (2006) The catalysis of biodiesel synthesis. Catalysis 19:41–83

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  CAS  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matucha M, Žilka L, Švihel K (1972) Gas chromatographic analysis of the higher fatty acids of the alga Chlorella vulgaris (pyrenoidosa). J Chromatogr 65:371–376

    Article  CAS  Google Scholar 

  • Mbaraka IK, Shanks BH (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. J Am Oil Chem Soc 83:79–91

    Article  CAS  Google Scholar 

  • McCormick RL, Alleman TL, Graboski MS, Herring AM, Tyson KS (2001) Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol 35:1742–1747

    Article  CAS  Google Scholar 

  • McCormick RL, Williams A, Ireland J, Brimhall M, Hayes RR (2006) Effect of biodiesel blends on vehicle emissions. National Renewable Energy Laboratory Report NREL/MP-540-40554

    Google Scholar 

  • Meher LC, Sagar DV, Nail SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  • Michaud AL, Diau G-Y, Abril R, Brenna JT (2002) Double bond localization in minor homoallyloic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry. Anal Biochem 307:348–360

    Article  CAS  Google Scholar 

  • Mittelbach M, Remschmidt C (2004) Biodiesel – the comprehensive handbook. M. Mittelbach, Graz

    Google Scholar 

  • Molina Grima E, García Camacho F, Sánchez Pérez JA, García Sánchez JL (1994) Biochemical productivity and fatty ac id profiles of isochrysis galbana parke and Tetraselmis sp. As a function of incident light intensity. Process Biochem 29:119–126

    Article  CAS  Google Scholar 

  • Moser BR, Knothe G, Vaughn SF, Isbell TA (2009) Production and evaluation of biodiesel from field pennycress (Thlaspi arvense L.) Oil. Energy Fuel 23:4149–4155

    Article  CAS  Google Scholar 

  • Mühling M, Belay A, Whitton BA (2005) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 17:137–146

    Article  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24/25:355–361

    Article  Google Scholar 

  • Nakazono Y (2003) Production technology for biodiesel fuels (in Japanese). Eco Ind 8:43–53

    CAS  Google Scholar 

  • National Biodiesel Board, Jefferson City, MO. U.S.A. http://www.biodiesel.org

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Article  CAS  Google Scholar 

  • Nikiema J, Heitz M (2008) Biodiesel. II. Production – a synthesis (Le biodiesel. II. Production – une synthèse). Can J Civil Eng 35:107–117

    Article  CAS  Google Scholar 

  • Orcutt DM, Patterson GW (1975) Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp Biochem Physiol Part B Comp Biochem 50:579–583

    Article  CAS  Google Scholar 

  • Parker PL, Van Baalen C, Maurer L (1967) Fatty acids in eleven species of blue-green algae: geochemical significance. Science 155:707–708

    Article  CAS  Google Scholar 

  • Poisson L, Ergan F (2001) Docosahexaenoic acid ethyl esters from Isochrysis galbana. J Biotechnol 91:75–81

    Article  CAS  Google Scholar 

  • Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939

    Article  CAS  Google Scholar 

  • Ranganathan SV, Lakshmi Narasimhan S, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160

    Article  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Pérez A, García-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Robles-Medina A, Gonzáles-Moreno LE-C, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408

    Article  CAS  Google Scholar 

  • Rodolfi L, Zitelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, Talbot SG, Zeiler KG (1994) Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. ACS Symp Ser 566:255–270

    Article  CAS  Google Scholar 

  • Schuchardt U, Serchelt R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9:199–210

    Article  CAS  Google Scholar 

  • Servel M-O, Claire C, Derrien A, Coiffard L, De Roeck-Holtzhauer Y (1994) Fatty acid composition of some marine microalgae. Phytochemistry 36:691–693

    Article  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2003) Enzymatic transesterification for biodiesel production. Indian J Biochem Biophys 40:392–399

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae. National Renewable Energy Laboratory, Report to U.S. Department of Energy’s Office of Fuels Development. http://www.nrel.gov/docs/legosti/fy98/24190.pdf

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2002) Report No. 420-P-02-001. At: http://www.epa.gov

  • Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89:1–9

    Article  CAS  Google Scholar 

  • Xu F, Z-l C, Cong W, Ouyang F (2004) Growth and fatty acid composition of Nannochloropsis sp. Grown mixotrophically in fed-batch culture. Biotechnol Lett 26:1319–1322

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Bioresour Technol 126:499–507

    CAS  Google Scholar 

  • Yu L, Lee I, Hammond EG, Johnson LA, Van Gerpen JH (1998) The influence of trace components on the melting point of methyl soyate. J Am Oil Chem Soc 75:1821–1824

    Article  CAS  Google Scholar 

  • Zabeti M, Daud WMAW, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777

    Article  CAS  Google Scholar 

Download references

Disclaimer

: Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Knothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Knothe, G. (2013). Production and Properties of Biodiesel from Algal Oils. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_12

Download citation

Publish with us

Policies and ethics