Skip to main content

The Scope of Modern Sleep Technology

  • Chapter
  • First Online:
Introduction to Modern Sleep Technology

Abstract

This chapter provides a brief introduction with regards to sleep technology and strives to raise awareness about its importance. With respect to the history of sleep technology, it is found that the sleep medicine has continued to develop over a period and has gradually evolved over the years. Based on recent advances and related research, a new definition of sleep technology will be proposed. This definition emphasizes a broader scope of study when compared with conventional sleep technology. Based on this definition a number of developed categories which are the core contents of this book are summarized. Finally, we provide examples for sleep environments and sleep models to demonstrate the impact of sleep technology. Recent research has proven that the limitations of conventional sleep medicine might be improved upon by applying the appropriate technology and interdisciplinary cooperation which is indeed the future of sleep research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achermann P, Borbély A (2003) Mathematical models of sleep regulation. Front Biosci 8((Cited April 25, 2003)):683–693

    Article  Google Scholar 

  2. Alexander DM, Arns MW, Paul RH, Rowe DL, Cooper N, Esser AH, Gordon E (2006) EEG markers for cognitive decline in elderly subjects with subjective memory complaints. J Integr Neurosci 5(1):49–74. doi:10.1142/s0219635206001021

    Article  Google Scholar 

  3. ASHRAE (2001) Fundamentals: 2001 Ashrae handbook. Amer Society of Heating, Atlanta

    Google Scholar 

  4. Bach V, Telliez F, Libert JP (2002) The interaction between sleep and thermoregulation in adults and neonates. Sleep Med Rev 6(6):481–492. doi:10.1053/smrv.2001.0177

    Article  Google Scholar 

  5. Borbély A (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    Google Scholar 

  6. Borbély A, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14(6):557–568. doi:10.1177/074873099129000894

    Google Scholar 

  7. Carskadon MA, Dement WC (1977) Sleepiness and sleep state on a 90-min schedule. Psychophysiology 14(2):127–133. doi:10.1111/j.1469-8986.1977.tb03362.x

    Article  Google Scholar 

  8. Carskadon MA, Dement WC, Mitler MM, Roth T, Westbrook PR, Keenan S (1986) Guidelines for the multiple sleep latency test (MSLT) – a standard measure of sleepiness. Sleep 9(4):519–524

    Google Scholar 

  9. Carter NL (1996) Transportation noise, sleep, and possible after-effects. Environ Int 22(1):105–116. doi:10.1016/0160-4120(95)00108-5

    Article  Google Scholar 

  10. Clemens Z, Fabo D, Halasz P (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132(2):529–535. doi:10.1016/j.neuroscience.2005.01.011

    Article  Google Scholar 

  11. Comte JC, Schatzman M, Ravassard P, Luppi PH, Salin PA (2006) A three states sleep-waking model. Chaos Soliton Fract 29(4):808–815. doi:10.1016/j.chaos.2005.03.054

    Article  MathSciNet  MATH  Google Scholar 

  12. Courey MS, Fomin D, Smith T, Huang S, Sanders D, Reinisch L (1999) Histologic and physiologic effects of electrocautery, CO2 laser, and radiofrequency injury in the porcine soft palate. Laryngoscope 109(8):1316–1319

    Article  Google Scholar 

  13. Culebras A (ed) (2007) Sleep disorders and neurological disease. Informa Healthcare, Inc., New York

    Google Scholar 

  14. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Kronauer RE (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181. doi:10.1126/science.284.5423.2177

    Article  Google Scholar 

  15. Fanger PO (1971) Air humidity, comfort and health. Technical University of Denmark, Lyndby

    Google Scholar 

  16. Fields RD (2009) The other brain: from dementia to schizophrenia, how new discoveries about the brain are revolutionizing medicine and science. Simon & Schuster, New York

    Google Scholar 

  17. Folkard S, Akerstedt T (1992) A three-process model of the regulation of alertness-sleepiness. In: Broughton RJ, Ogilvie RD (eds) Sleep, arousal, and performance. Birkhäuser, Boston, pp 11–26

    Google Scholar 

  18. Gastaut H, Tassinari C, Duron B (1965) Polygraphic study of diurnal and nocturnal (hypnic and respiratory) episodal manifestations of Pickwick syndrome. Rev Neurol (Paris) 112:568–579

    Google Scholar 

  19. Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J Appl Physiol 51(4):948–954

    Google Scholar 

  20. Kleitman, father of sleep research (1999, Sept. 23) The University of Chicago Chronicle

    Google Scholar 

  21. Lin Z, Deng S (2008) A study on the thermal comfort in sleeping environments in the subtropics – developing a thermal comfort model for sleeping environments. Build Environ 43(1):70–81. doi:10.1016/j.buildenv.2006.11.026

    Article  MathSciNet  Google Scholar 

  22. Lin CF, Liu PL, Chiang RPY (2011) New EEG markers of Alzheimer’s disease for the elderly. Paper presented at the 6th world congress of the World Sleep Federation, Kyoto, 2011

    Google Scholar 

  23. Loomis AL, Harvey EN, Hobart GA (1937) Cerebral states during sleep, as studied by human brain potentials. J Exp Psychol 21:127–144. doi:10.1037/h0057431

    Article  Google Scholar 

  24. Loube D (1998) Radiofrequency ablation for sleep-disordered breathing. Chest 113(5):1151–1152

    Article  Google Scholar 

  25. Mancia M (ed) (2006) Psychoanalysis and neuroscience. Springler-Verlag Italia, Italy

    Google Scholar 

  26. Muzet A (2007) Environmental noise, sleep and health. Sleep Med Rev 11(2):135–142. doi:10.1016/j.smrv.2006.09.001

    Article  Google Scholar 

  27. Muzet A, Ehrhart J, Libert JP, Candas V (1979) The effect of thermal environment on sleep stages. In: Fanger PO, Valbjorn O (eds) Indoor climate: effects on human comfort, performance, and health. Danish Building Research Institute, Copenhagen, pp 753–761

    Google Scholar 

  28. Olbrich E, Achermann P (2005) Analysis of oscillatory patterns in the human sleep EEG using a novel detection algorithm. J Sleep Res 14(4):337–346. doi:10.1111/j.1365-2869.2005.00475.x

    Article  Google Scholar 

  29. Olbrich E, Claussen JC, Achermann P (2011) The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain. Philos Trans R Soc A Math Phys Eng Sci 369(1952):3884–3901. doi:10.1098/rsta.2011.0082

    Article  MathSciNet  MATH  Google Scholar 

  30. Powell NB, Riley RW, Troell RJ, Blumen MB, Guilleminault C (1997) Radiofrequency volumetric reduction of the tongue. A porcine pilot study for the treatment of obstructive sleep apnea syndrome. Chest 111(5):1348–1355

    Article  Google Scholar 

  31. Powell NB, Riley RW, Troell RJ, Li K, Blumen MB, Guilleminault C (1998) Radiofrequency volumetric tissue reduction of the palate in subjects with sleep-disordered breathing. Chest 113(5):1163–1174

    Article  Google Scholar 

  32. Powell NB, Riley RW, Guilleminault C (1999) Radiofrequency tongue base reduction in sleep-disordered breathing: a pilot study. Otolaryngol Head Neck Surg 120(5):656–664

    Article  Google Scholar 

  33. Ravelo-Garcia AG, Lorenzo-Garcia FD, Navarro-Mesa JL (2009) Sleep quality differences according to a statistical continuous sleep model. In: Proceedings of the European computing conference. Lecture notes in electrical engineering, vol 27, pp 133–141

    Google Scholar 

  34. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. National Institutes of Health, Bethesda

    Google Scholar 

  35. Schabus M, Hodlmoser K, Gruber G, Sauter C, Anderer P, Klosch g, Zeitlhofer J (2006) Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities. Eur J Neurosci 23(7):1738–1746. doi:10.1111/j.1460-9568.2006.04694.x

    Article  Google Scholar 

  36. Scholz UJ, Bianchi AM, Cerutti S, Kubicki S (1997) Vegetative background of sleep: spectral analysis of the heart rate variability. Physiol Behav 62(5):1037–1043. doi:10.1016/s0031-9384(97)00234-5

    Article  Google Scholar 

  37. Sullivan CE, Berthonjones M, Issa FG, Eves L (1981) Reversal of obstructive sleep-apnea by continuous positive airway pressure applied through the nares. Lancet 1(8225):862–865

    Article  Google Scholar 

  38. Uebeyli ED, Cvetkovic D, Holland G, Cosic I (2010) Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of alterations in sleep EEG activity during hypopnoea episodes. Digit Signal Process 20(3):678–691. doi:10.1016/j.dsp. 2009.08.005

    Article  Google Scholar 

  39. Wellman A, Eckert DJ, Jordan AS, Edwards BA, Passaglia CL, Jackson AC, White DP (2011) A method for measuring and modeling the physiological traits causing obstructive sleep apnea. J Appl Physiol 110(6):1627–1637. doi:10.1152/japplphysiol.00972.2010

    Article  Google Scholar 

  40. Wolkoff P, Kjaergaard SK (2007) The dichotomy of relative humidity on indoor air quality. Environ Int 33(6):850–857. doi:10.1016/j.envint.2007.04.004

    Article  Google Scholar 

  41. Woloszyn M, Kalamees T, Abadie MO, Steeman M, Kalagasidis AS (2009) The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build Environ 44(3):515–524. doi:10.1016/j.buildenv.2008.04.017

    Article  Google Scholar 

  42. Wright HR, Lack LC, Kennaway DJ (2004) Differential effects of light wavelength in phase advancing the melatonin rhythm. J Pineal Res 36(2):140–144. doi:10.1046/j.1600-079X.2003.00108.x

    Article  Google Scholar 

  43. Wyon DP, Fang L, Mayer HW, Sundell J, Weirsoe CG, Sederberg-Olsen N et al (2002) Limiting criteria for human exposure to low humidity indoors. In: Proceedings of the 9th international congress on indoor air quality, Monterey, 2002, vol IV, pp 400–405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayleigh Ping-Ying Chiang M.D., M.M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chiang, R.PY. et al. (2012). The Scope of Modern Sleep Technology. In: Chiang, RY., Kang, SC. (eds) Introduction to Modern Sleep Technology. Intelligent Systems, Control and Automation: Science and Engineering, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5470-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5470-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5469-0

  • Online ISBN: 978-94-007-5470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics