Skip to main content

Multicompartmental Poroelasticity as a Platform for the Integrative Modeling of Water Transport in the Brain

  • Conference paper
Computer Models in Biomechanics

Abstract

This work proposes the implementation of a multiple-network poroelastic theory (MPET) model for the purpose of investigating in detail the transport of water within the cerebral environment. The key advantage of using the MPET representation is that it accounts for fluid transport between CSF, brain parenchyma and cerebral blood. A further novelty in the model is the amalgamation of anatomically accurate Choroid Plexus regions, with their individual feeding arteries. This model is used to demonstrate and discuss the impact of aqueductal stenosis on the cerebral ventricles, along with possible future treatment techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai M, Elsworth D, Roegiers J (1993) Multiporosity/multipermiability approach to the simulation of naturally fractured reservoirs. Water Resour Res 29:1621–1633

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  • Bradley WG Jr (2008) Idiopathic normal pressure hydrocephalus: new findings and thoughts on etiology. Am J Neuroradiol 29:1–3

    Article  Google Scholar 

  • Byrd C (2006) Normal pressure hydrocephalus: dementia’s hidden cause. Nurse Pract 31:28–29, 31–35

    Article  Google Scholar 

  • Cheng S, Tan K, Bilston LE (2010) The effects of interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J Biomech 43:579–582

    Article  Google Scholar 

  • Giannetti AV, Malheiros JA, da Silva MC (2011) Fourth ventriculostomy: an alternative treatment for hydrocephalus due to atresia of the magendie and luschka foramina. J Neurosurg Pediatrics 7:152–156

    Article  Google Scholar 

  • Gupta S, Soellinger M, Boesiger P, Poulikakos D, Kurtcuoglu V (2009) Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J Biomech Eng 131:021010

    Article  Google Scholar 

  • Gupta S, Soellinger M, Grzybowski DM, Boesiger P, Biddiscombe J, Poulikakos D, Kurtcuoglu V (2010) Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J R Soc Interface 7:1195–1204

    Article  Google Scholar 

  • Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, Gannon B, Jones DH, Jennum P, Jordanova A, Jönsson L, Karampampa K, Knapp M, Kobelt G, Kurth T, Lieb R, Linde M, Ljungcrantz C, Maercker A, Melin B, Moscarelli M, Musayev A, Norwood F, Preisig M, Pugliatti M, Rehm J, Salvador-Carulla L, Schlehofer B, Simon R, Steinhausen HC, Stovner LJ, Vallat JM, den Bergh PV, van Os J, Vos P, Xu W, Wittchen HU, Jönsson B, Olesen J (CDBE2010Study Group) (2011) Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacology 21:718–779.

    Article  Google Scholar 

  • Hakim S, Adams R (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure: observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:307–327

    Article  Google Scholar 

  • Hamilton MG (2009) Treatment of hydrocephalus in adults. Semin Pediatr Neurol 16:34–41

    Article  Google Scholar 

  • Howden L, Giddings D, Power H, Aroussi A, Vloeberghs M, Garnett M, Walker D (2007) Three-dimensional cerebrospinal fluid flow within the human vetricular system. Comput Methods Biomech Biomed Eng 11:123–133

    Article  Google Scholar 

  • Irani DN (2009) Cerebrospinal fluid in clinical practice. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Khandelwal S, Visaria M (2006) Algebraic multigrid solver for structured meshes. Me608 final report, pp 1–7

    Google Scholar 

  • Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123:71–79

    Article  Google Scholar 

  • Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:1–7

    Article  Google Scholar 

  • Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    Article  Google Scholar 

  • Schödel P, Proescholdt M, Ullrich OW, Brawanski A, Schebesch KM (2012) An outcome analysis of two different procedures of burr-hole trephine and external ventricular drainage in acute hydrocephalus. J Clin Neurosci 19:267–270

    Article  Google Scholar 

  • Stadlbauer A, Salomonowitz E, van der Riet W, Buchfelder M, Ganslandt O (2010) Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. Neuroimage 51:42–52

    Article  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  • Thompson D (2009) Hydrocephalus. Neurosurg 27:130–134

    Google Scholar 

  • Tu J, Yeoh G, Liu C (2008) Computational fluid dynamics: a practical approach. Wiley, New York

    MATH  Google Scholar 

  • Tully B, Ventikos Y (2011) Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J Fluid Mech 667:188–215

    Article  MathSciNet  MATH  Google Scholar 

  • Webster R (1994) An algebraic multigrid solver for Navier-Stokes problems. Int J Numer Methods Fluids 18:761–780

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study is supported by the Digital Economy Programme; a Research Councils UK cross-Council initiative led by EPSRC and contributed to by AHRC, ESRC, and MRC. The EPSRC is further acknowledged for providing the resources necessary for the High Performance Computing simulations conducted in this study. The ESI Group and Dr. M. Megahed are kindly acknowledged for allowing the use of the CFD-ACE+ multiphysics suite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Ventikos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Vardakis, J.C., Tully, B.J., Ventikos, Y. (2013). Multicompartmental Poroelasticity as a Platform for the Integrative Modeling of Water Transport in the Brain. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics