Skip to main content

Reformulation of Mixture Theory-Based Poroelasticity for Interstitial Tissue Growth

  • Conference paper
Computer Models in Biomechanics
  • 2330 Accesses

Abstract

This contribution presents an alternative approach to mixture theory-based poroelasticity by transferring some poroelastic concepts developed by Biot to mixture theory. These concepts are a larger RVE and the subRVE-RVE velocity average tensor, which Biot called the micro-macro velocity average tensor. This velocity average tensor is assumed here to depend upon the pore structure fabric. The formulation of mixture theory presented is directed toward the modeling of interstitial growth, that is to say changing mass and changing density of an organism. Growth is slow and accelerations are neglected in the applications. The velocity of a solid constituent is employed as the main reference velocity in preference to the mean velocity concept from the original formulation of mixture theory. The standard development of statements of the conservation principles and entropy inequality employed in mixture theory are easily modified to account for these kinematic changes and to allow for supplies of mass, momentum and energy to each constituent and to the mixture as a whole. The objective is to establish a basis for the development of constitutive equations for growth of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkin RJ, Craine RE (1976a) Continuum theories of mixtures: applications. J Inst Math Appl 17:153–207

    Article  MathSciNet  MATH  Google Scholar 

  • Atkin RJ, Craine RE (1976b) Continuum theories of mixtures: basic theory and historical development. Q J Mech Appl Math 29:209–244

    Article  MathSciNet  MATH  Google Scholar 

  • Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111:23–29

    Article  Google Scholar 

  • Biot MA (1935) Le problème de la consolidation des matières argileuses sous une charge. Ann Soc Sci Brux Sér I 55:110–113

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  MATH  Google Scholar 

  • Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J Acoust Soc Am 28:168–178

    Article  MathSciNet  Google Scholar 

  • Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28:179–191

    Article  MathSciNet  Google Scholar 

  • Biot MA (1962a) Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34:1254–1264

    Article  MathSciNet  Google Scholar 

  • Biot MA (1962b) Mechanics of deformation and acoustic propagation in porous media. J Appl Mech 33:1482–1498

    MathSciNet  MATH  Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    MathSciNet  Google Scholar 

  • Bowen RM (1967) Toward a thermodynamics and mechanics of mixtures. Arch Ration Mech Anal 24:370–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen RM (1976) Theory of mixtures. In: Eringen AC (ed) Continuum physics, vol III. Academic Press, New York, pp 1–127

    Google Scholar 

  • Bowen RM (1980) Incompressible pourous media models by use of theory of mixture. Int J Eng Sci 18:1129–1148

    Article  MATH  Google Scholar 

  • Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735

    Article  MATH  Google Scholar 

  • Cardoso L, Cowin SC (2011) Fabric dependence of quasi-waves in anisotropic porous media. J Acoust Soc Am 129:3302–3316

    Article  Google Scholar 

  • Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13:167–178

    Article  MathSciNet  MATH  Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147

    Article  Google Scholar 

  • Cowin SC (2004a) Anisotropic poroelasticity: fabric tensor formulation. Mech Mater 36:666–677

    Article  Google Scholar 

  • Cowin SC (2004b) Tissue growth and remodeling. Annu Rev Biomed Eng 6:77–107

    Article  Google Scholar 

  • Cowin SC (2011) The specific growth rates of tissues; a review and a reevaluation. J Biomech Eng 133:041001

    Article  Google Scholar 

  • Cowin SC, Cardoso L (2011) Fabric dependence of poroelastic wave propagation in anisotropic porous media. Biomech Model Mechanobiol 10:39–65

    Article  Google Scholar 

  • Cowin SC, Cardoso L (2012) Mixture theory-based poroelasticity as a model of interstitial tissue growth. Mech Mater 44:47–57

    Article  Google Scholar 

  • Cowin SC, Hegedus DH (1976) Bone remodelling I: Theory of adaptive elasticity. J Elast 6:313–326

    Article  MathSciNet  MATH  Google Scholar 

  • Cowin SC, Satake M (eds) (1978) Continuum mechanical and statistical approaches in the mechanics of granular materials. Gakujutsu Bunken Fukyu-Kai, Tokyo

    Google Scholar 

  • De Boer R (1996) Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl Mech Rev 49:201–262

    Article  Google Scholar 

  • De Boer R (2000) Theory of porous media. Highlights in the historical development and current state. Springer, Heidelberg

    Google Scholar 

  • Fick A (1855) Ãœber Diffusion. Ann Phys 94:59–86

    Article  Google Scholar 

  • Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  Google Scholar 

  • Hilliard JE (1967) Determination of structural anisotropy. In: Stereology—proceedings, 2nd international congress for stereology, Chicago, 1967. Springer, Berlin, p 219

    Google Scholar 

  • Kanatani K (1983) Characterization of structural anisotropy by fabric tensors and their statistical test. J Jpn Solid Mech Found Eng 23:171–177

    Google Scholar 

  • Kanatani K (1984a) Stereological determination of structural anisotropy. Int J Eng Sci 22:531–546

    Article  MathSciNet  MATH  Google Scholar 

  • Kanatani K-I (1984b) Distribution of directional data and fabric tensors. Int J Eng Sci 22:149–164

    Article  MathSciNet  MATH  Google Scholar 

  • Kanatani K (1985) Procedures for stereological estimation of structural anisotropy. Int J Eng Sci 23:587–598

    Article  MATH  Google Scholar 

  • Levick JR (1995) An introduction to cardiovascular physiology, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • Matsuura M, Eckstein F, Lochmüller E-M, Zysset PK (2008) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7:27–42

    Article  Google Scholar 

  • Oda M (1976) Fabrics and their effects on the deformation behaviors of sand. Master Thesis, Department of Foundation Engr., Saitama University

    Google Scholar 

  • Oda M, Konishi J, Nemat-Nasser S (1980) Some experimentally based fundamental results on the mechanical behavior of granular materials. Géotechnique 30:479–495

    Article  Google Scholar 

  • Oda M, Nemat-Nasser S, Konishi J (1985) Stress induced anisotropy in granular masses. Solid Mech Found 25:85–97

    Article  Google Scholar 

  • Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  Google Scholar 

  • Odgaard A (2001) Quantification of cancellous bone architecture. In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, pp 14-1–14-19

    Google Scholar 

  • Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R (1997) Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 30:487–495

    Article  Google Scholar 

  • Satake M (1982) Fabric tensor in granular materials. In: Vermeer PA, Lugar HJ (eds) Deformation and failure of granular materials. Balkema, Rotterdam, p 63

    Google Scholar 

  • Stefan J (1871) Ãœber das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemischen. Sitzgesber Akad Wiss Wien 63:63–124

    Google Scholar 

  • Truesdell C, Toupin RA (1960) The classical field theories. In: Flügge S (ed) Encyclopedia of physics, vol III/1. Springer, Berlin, pp 226–793

    Google Scholar 

  • Truesdell CA (1957) Sulle basi della termomeccania. Rend Lincei 22:33–38 1158–1166

    MathSciNet  MATH  Google Scholar 

  • Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101:153–168

    Article  Google Scholar 

  • Whitehouse WJ, Dyson ED (1974) Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat 118:417–444

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (PHY-0848491), the PSC-CUNY Research Award Program of the City University of New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Cowin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cowin, S.C. (2013). Reformulation of Mixture Theory-Based Poroelasticity for Interstitial Tissue Growth. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics