Advertisement

Multiphase Flows

  • Roberto Mauri
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

In this chapter we derive the equations of motion of multiphase fluids. In the classical theory of multiphase flow, each phase is associated with its own conservation equations (of mass, momentum, energy and chemical species), assuming that it is at local equilibrium and separated from the other phases by zero-thickness interfaces, with appropriate boundary conditions. Instead, here we describe the so-called diffuse interface, or phase field, model, assuming that interfaces have a non-zero thickness, i.e. they are “diffuse”, as it is more fundamental than the classical, sharp interface theory and is therefore more suitable to be coupled to all non-equilibrium thermodynamics results. After describing van der Waals’ theory of coexisting phases at equilibrium (Sect. 9.2), in Sect. 9.3 we illustrate the main idea of the diffuse interface model, leading to the definition of generalized chemical potentials, where the non uniformity of the composition field is accounted for. Then, in Sect. 9.4, the equations of motion are derived by applying the principle of minimum action, showing that an additional, so called, Korteweg, reversible force appears in the momentum conservation equation. This force is proportional (with a minus sign) to the gradient of the generalized chemical potential and therefore tends to restore the equilibrium conditions (where chemical potentials are uniform). Finally, in Sect. 9.5, we show that for incompressible and symmetric binary mixtures the governing equations simplify considerably.

Keywords

Helmholtz Free Energy Diffuse Interface Total Free Energy Interface Thickness Molar Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Annu. Rev. Fluid Mech. 30, 139 (1998) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Antanovskii, L.K.: Phys. Fluids 7, 747 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Antanovskii, L.K.: Phys. Rev. E 54, 6285 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    Cahn, J.W.: Acta Metall. 9, 795 (1961) CrossRefGoogle Scholar
  5. 5.
    Cahn, J.W.: J. Chem. Phys. 66, 3667 (1977) ADSCrossRefGoogle Scholar
  6. 6.
    Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 31, 688 (1958) ADSCrossRefGoogle Scholar
  7. 7.
    Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258 (1958) ADSCrossRefGoogle Scholar
  8. 8.
    Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 31, 688 (1959) ADSCrossRefGoogle Scholar
  9. 9.
    Davis, H.T., Scriven, L.E.: Adv. Chem. Phys. 49, 357 (1982) CrossRefGoogle Scholar
  10. 10.
    de Gennes, P.G.: J. Chem. Phys. 72, 4756 (1980), and references therein MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys. 49, 435 (1977) ADSCrossRefGoogle Scholar
  12. 12.
    Jacqmin, D.: J. Fluid Mech. 402, 57 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Korteweg, D.J.: Arch. Neerl. Sci. Exactes Nat., Ser. II 6, 1 (1901) zbMATHGoogle Scholar
  14. 14.
    Lamorgese, A.G., Mauri, R.: Phys. Fluids 17, 034107 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    Lamorgese, A.G., Mauri, R.: Phys. Fluids 18, 044107 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    Lamorgese, A.G., Mauri, R.: Int. J. Multiph. Flow 34, 987 (2008) CrossRefGoogle Scholar
  17. 17.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I. Pergamon, Elmsford (1980), Chap. XIV Google Scholar
  18. 18.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics, Chap. 84 Google Scholar
  19. 19.
    Lowengrub, J., Truskinovsky, L.: Proc. R. Soc. Lond., Ser. A 454, 2617 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lucretius, T.C.: De Rerum Natura, Book I (50 BCE) Google Scholar
  21. 21.
    Madruga, S., Thiele, U.: Phys. Fluids 21, 062104 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    Mauri, R.: The Diffuse Interface Approach. Springer, Berlin (2010) Google Scholar
  23. 23.
    Molin, D., Mauri, R.: Phys. Fluids 19, 074102 (2007) ADSCrossRefGoogle Scholar
  24. 24.
    Molin, D., Mauri, R.: Chem. Eng. Sci. 63, 2402 (2008) CrossRefGoogle Scholar
  25. 25.
    Onuki, A.: Phys. Rev. E 75, 036304 (2007) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Pismen, L.M.: Phys. Rev. E 64, 021603 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    Pismen, L.M., Pomeau, Y.: Phys. Rev. E 62, 2480 (2000) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Oxford University Press, London (1982) Google Scholar
  29. 29.
    Thiele, U., Madruga, S., Frastia, L.: Phys. Fluids 19, 122106 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (1893). Reprinted in J. Stat. Phys. 20, 200 (1979) Google Scholar
  31. 31.
    Vladimirova, N., Malagoli, A., Mauri, R.: Phys. Rev. E 60, 2037 (1999), also see p. 6968 ADSCrossRefGoogle Scholar
  32. 32.
    Widom, B.: J. Phys. Chem. 100, 13190 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Roberto Mauri
    • 1
  1. 1.Department of Chemical Engineering, Industrial Chemistry and Material ScienceUniversity of PisaPisaItaly

Personalised recommendations