Skip to main content

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

In this chapter we derive the equations of motion of multiphase fluids. In the classical theory of multiphase flow, each phase is associated with its own conservation equations (of mass, momentum, energy and chemical species), assuming that it is at local equilibrium and separated from the other phases by zero-thickness interfaces, with appropriate boundary conditions. Instead, here we describe the so-called diffuse interface, or phase field, model, assuming that interfaces have a non-zero thickness, i.e. they are “diffuse”, as it is more fundamental than the classical, sharp interface theory and is therefore more suitable to be coupled to all non-equilibrium thermodynamics results. After describing van der Waals’ theory of coexisting phases at equilibrium (Sect. 9.2), in Sect. 9.3 we illustrate the main idea of the diffuse interface model, leading to the definition of generalized chemical potentials, where the non uniformity of the composition field is accounted for. Then, in Sect. 9.4, the equations of motion are derived by applying the principle of minimum action, showing that an additional, so called, Korteweg, reversible force appears in the momentum conservation equation. This force is proportional (with a minus sign) to the gradient of the generalized chemical potential and therefore tends to restore the equilibrium conditions (where chemical potentials are uniform). Finally, in Sect. 9.5, we show that for incompressible and symmetric binary mixtures the governing equations simplify considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    T.C. Lucretius [20], “Corpus inani distinctum, quoniam nec plenum naviter extat nec porro vacuum.”

  2. 2.

    For a review of the theory of capillarity, see [28].

  3. 3.

    See [18].

  4. 4.

    The extra term that is obtained, \(\rho\nabla \widetilde{\mu}^{(2)} \), being the gradient of a scalar, can be absorbed into the pressure term.

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Annu. Rev. Fluid Mech. 30, 139 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Antanovskii, L.K.: Phys. Fluids 7, 747 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Antanovskii, L.K.: Phys. Rev. E 54, 6285 (1996)

    Article  ADS  Google Scholar 

  4. Cahn, J.W.: Acta Metall. 9, 795 (1961)

    Article  Google Scholar 

  5. Cahn, J.W.: J. Chem. Phys. 66, 3667 (1977)

    Article  ADS  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 31, 688 (1958)

    Article  ADS  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 28, 258 (1958)

    Article  ADS  Google Scholar 

  8. Cahn, J.W., Hilliard, J.E.: J. Chem. Phys. 31, 688 (1959)

    Article  ADS  Google Scholar 

  9. Davis, H.T., Scriven, L.E.: Adv. Chem. Phys. 49, 357 (1982)

    Article  Google Scholar 

  10. de Gennes, P.G.: J. Chem. Phys. 72, 4756 (1980), and references therein

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  12. Jacqmin, D.: J. Fluid Mech. 402, 57 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Korteweg, D.J.: Arch. Neerl. Sci. Exactes Nat., Ser. II 6, 1 (1901)

    MATH  Google Scholar 

  14. Lamorgese, A.G., Mauri, R.: Phys. Fluids 17, 034107 (2005)

    Article  ADS  Google Scholar 

  15. Lamorgese, A.G., Mauri, R.: Phys. Fluids 18, 044107 (2006)

    Article  ADS  Google Scholar 

  16. Lamorgese, A.G., Mauri, R.: Int. J. Multiph. Flow 34, 987 (2008)

    Article  Google Scholar 

  17. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part I. Pergamon, Elmsford (1980), Chap. XIV

    Google Scholar 

  18. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Chap. 84

    Google Scholar 

  19. Lowengrub, J., Truskinovsky, L.: Proc. R. Soc. Lond., Ser. A 454, 2617 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lucretius, T.C.: De Rerum Natura, Book I (50 BCE)

    Google Scholar 

  21. Madruga, S., Thiele, U.: Phys. Fluids 21, 062104 (2009)

    Article  ADS  Google Scholar 

  22. Mauri, R.: The Diffuse Interface Approach. Springer, Berlin (2010)

    Google Scholar 

  23. Molin, D., Mauri, R.: Phys. Fluids 19, 074102 (2007)

    Article  ADS  Google Scholar 

  24. Molin, D., Mauri, R.: Chem. Eng. Sci. 63, 2402 (2008)

    Article  Google Scholar 

  25. Onuki, A.: Phys. Rev. E 75, 036304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. Pismen, L.M.: Phys. Rev. E 64, 021603 (2001)

    Article  ADS  Google Scholar 

  27. Pismen, L.M., Pomeau, Y.: Phys. Rev. E 62, 2480 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Oxford University Press, London (1982)

    Google Scholar 

  29. Thiele, U., Madruga, S., Frastia, L.: Phys. Fluids 19, 122106 (2007)

    Article  ADS  Google Scholar 

  30. van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (1893). Reprinted in J. Stat. Phys. 20, 200 (1979)

    Google Scholar 

  31. Vladimirova, N., Malagoli, A., Mauri, R.: Phys. Rev. E 60, 2037 (1999), also see p. 6968

    Article  ADS  Google Scholar 

  32. Widom, B.: J. Phys. Chem. 100, 13190 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mauri, R. (2013). Multiphase Flows. In: Non-Equilibrium Thermodynamics in Multiphase Flows. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5461-4_9

Download citation

Publish with us

Policies and ethics