Advertisement

Microscopic Reversibility

  • Roberto Mauri
Chapter
Part of the Soft and Biological Matter book series (SOBIMA)

Abstract

The Principle of Microscopic Reversibility was formulated by Richard Tolman (The Principles of Statistical Mechanics, Dover, New York, 1938) who stated that, at equilibrium, “any molecular process and the reverse of that process will be taking place on the average at the same rate”. Applying this concept to macroscopic systems at local equilibrium leads to the rule of detailed balances (Sect. 2.2) and then, assuming linear relations between thermodynamic forces and fluxes, to the formulation of the celebrated reciprocity relations (Sect. 2.3) derived by Lars Onsager in 1931, and the fluctuation-dissipation theorem, (Sect. 2.4) proved by Herbert Callen and Theodore Welton in 1951. In this chapter, this vast subject matter is treated with a critical attitude, stressing all the hypotheses and their limitations.

Keywords

Time Reversal Detailed Balance Reciprocity Relation Thermodynamic Force Conditional Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Callen, H.B., Greene, R.F.: Phys. Rev. 86, 702 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Callen, H.B., Greene, R.F.: Phys. Rev. 88, 1387 (1952) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Callen, H.B., Welton, T.A.: Phys. Rev. 83, 34 (1951) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Casimir, H.B.G.: Rev. Mod. Phys. 17, 343 (1945) ADSCrossRefGoogle Scholar
  5. 5.
    de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1962), Chap. VIII.4 Google Scholar
  6. 6.
    Einstein, A.: Ann. Phys. (Berlin) 17, 549 (1905) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Green, M.S.: J. Chem. Phys. 22, 398 (1954) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Kubo, R.: J. Phys. Soc. Jpn. 12, 570 (1957) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Marconi, U.M.B., et al.: Phys. Rep. 461, 111 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Meixner, J.: Rheol. Acta 12, 465 (1973) CrossRefGoogle Scholar
  11. 11.
    Nyquist, H.: Phys. Rev. 32, 110 (1928) ADSCrossRefGoogle Scholar
  12. 12.
    Onsager, L.: Phys. Rev. 37, 405 (1931) ADSCrossRefGoogle Scholar
  13. 13.
    Onsager, L.: Phys. Rev. 38, 2265 (1931) ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Tolman, R.C.: The Principles of Statistical Mechanics, p. 163. Dover, New York (1938), Chap. 50 Google Scholar
  15. 15.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981), Chap. VIII.8 zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Roberto Mauri
    • 1
  1. 1.Department of Chemical Engineering, Industrial Chemistry and Material ScienceUniversity of PisaPisaItaly

Personalised recommendations