Advertisement

The Vine Functioning Pathway, A New Conceptual Representation

  • Cécile Coulon-LeroyEmail author
  • René Morlat
  • Gérard Barbeau
  • Christian Gary
  • Marie Thiollet-Scholtus
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 11)

Abstract

Climate change, new regulations for preservation of the environment and demands of the markets for specific products, make it increasingly necessary to optimize the choice of cropping practices. The winegrowers take into account the combined influences of environmental factors, plant material and practices, to improve grapes and wine. However, this combined influence has been little studied. A general formalization of these multiple influences at the scale of viticultural terroirs is necessary to better characterize the growth of the vine and its impact on the yearly characteristics of grape and wine. In this article, following a global system approach we review current knowledge about the relationships between environmental factors, plant material, agricultural practices, the growth of the vine and the characteristics of grapes and wine. We propose a conceptual model formalizing the relationships between the systemic variables. The system can be represented as the new concept of ‘the vine functioning pathway’, which we define as the logical and ordered combination of the effects of environmental factors, plant material and agricultural practices on the levels of vigor and earliness of the vine and the final characteristics of the product. The resulting product of the system model is the grape and then the wine. This conceptual model is less accurate than a functional mathematical model but is the first which takes into account the whole complexity of the vine system. The conceptual model built and implemented by a computer can be used as a support tool for decisions aiding in the optimization of cropping practices based on environmental factors and specific products goals.

Keywords

Interaction Physical environment Cropping practices Vigor Precocity Water supply Quality of products 

Notes

Acknowledgements

This work is part of a Ph.D. thesis funded by the ‘Science for Action and Development’ Department of the National Institute of Agronomic Research and the region ‘Pays de Loire’ (France).

References

  1. Asselin C, Barbeau G, Morlat R (2001) Climatic components approach to diverse scales in viticulture zoning (in French). Bull OIV 74(843–844):301–318Google Scholar
  2. Barbeau G, Blin A (2010) Rootstock influence on agronomic comportement of the vine (cv. Cabernet franc) in the middle Loire valley (in French). Available at http://www.techniloire.com/documents/124963587/Essai%20porte-greffe%20CF_vf.pdf. Accessed 23 Mar 2011
  3. Barbeau G, Asselin C, Morlat R (1998) Estimate of the viticultural potential of the Loire valley “terroirs” according to a vine’s cycle precocity index (in French). Bull OIV 71(805/806):247–262Google Scholar
  4. Barbeau G, Goulet E, Ramillon D, Rioux D, Blin A, Marsault J, Panneau JPP (2006) Effect of the interaction rootstock-grass cover on the agronomical response of the grapevine Vitis vinifera L., cvs. Cabernet Franc et Chenin (in French). Progrès Agric Vitic 123(4):80–86Google Scholar
  5. Bérard L, Marchenay P (2006) Local products and geographical indications: taking account of local knowledge and biodiversity. Int Soc Sci J 58(187):109–116CrossRefGoogle Scholar
  6. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11(3):242–295. doi: 10.1111/j.1755-0238.2005.tb00028.x CrossRefGoogle Scholar
  7. Bodin F, Morlat R (2003) Characterizing a vine terroir by combining a pedological field model and a survey of the vine growers in the Anjou region (France). J Int Sci Vigne Vin 37(4):199–211Google Scholar
  8. Bodin F, Morlat R (2006) Characterization of viticultural terroirs using a simple field model based on soil depth I. Validation of the water supply regime, phenology and vine vigour, in the Anjou vineyard (France). Plant Soil 281(1/2):37–54. doi: 10.1007/s11104-005-3768-0 CrossRefGoogle Scholar
  9. Bramley RGV, Hamilton RP (2007) Terroir and precision viticulture: are they compatible? J Int Sci Vigne Vin 41(1):1–8Google Scholar
  10. Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Henault C, Maraux F, Seguin B, Sinoquet (2001) An overview of the crop model STICS. Paper from the 2nd international symposium on modeling cropping systems, Florence, ItalyGoogle Scholar
  11. Cadot Y (2006) Le lien du vin au terroir: complexité du concept de typicité. (in French). Revue des œnologues 119:9–11Google Scholar
  12. Cadot Y (2010) Influence de la date de vendange sur les composés phénoliques de la baie de raisin; conséquences pour la typicité du vin. Ph.D. thesis, Centre International d’Études Supérieures en Sciences Agronomiques Montpellier Supagro, France, 229ppGoogle Scholar
  13. Cadot Y, Caille S, Samson A, Thiollet-Scholtus M, Barbeau G, Casabianca F, Cheynier V (2011) Sensory typicality related to terroir: from conceptual to perceptive representation. Are winemaking practices decisive ? In: Dunod (ed) Actualités Oenologiques 2011, paper from the ‘9e symposium international d’œnologie’, Bordeaux, 15–17 Juin 2011, Paris, FranceGoogle Scholar
  14. Cadot Y, Caille S, Thiollet-Scholtus M, Samson A, Barbeau G, Casabianca F, Cheynier V (2012) Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Qual Pref 24(1):48–58. doi: 10.1016/j.foodqual.2011.08.012 CrossRefGoogle Scholar
  15. Calonnec A, Cartolaro P, Chadoeuf J (2009) Highlighting features of spatiotemporal spread of powdery mildew epidemics in the vineyard using statistical modeling on field experimental data. Phytopathology 99(4):411–422. doi: 10.1094/phyto-99-4-0411 PubMedCrossRefGoogle Scholar
  16. Carbonneau A (1993) Unité de terroir viticole. (in French). Progrès Agric. Vitic 2:29–30Google Scholar
  17. Carbonneau A, Deloire A, Jaillard B (2007) La vigne. Physiologie, terroir, culture. (in French). Dunod (ed), Paris, FranceGoogle Scholar
  18. Carey V, Archer E, Barbeau G, Saayman D (2007) The use of local knowledge relating to vineyard performance to identify viticultural terroirs in stellenbosch and surrounds. Paper from the international workshop on advances in grapevine and wine research. International Society Horticultural Science, pp 385–391Google Scholar
  19. Carey VA, Saayman D, Archer E, Barbeau G, Wallace M (2008) Viticultural terroirs in Stellenbosch. South Africa. I. The identification of natural terroir units. J Int Sci Vigne Vin 42(4):169–183Google Scholar
  20. Casabianca F, Sylvander B, Noël Y, Béranger C, Coulon J-B, Roncin F (2005). Terroir et typicité: deux concepts-clés des Appellations d’Origine Contrôlée. Essai de définitions scientifiques et opérationnelles. (in French). Paper from an international symposium on territory and regional development issues, Lyon, 9–11 Mar 2005Google Scholar
  21. Celette F, Findeling A, Gary C (2009) Competition for nitrogen in an unfertilized intercropping system: the case of an association of grapevine and grass cover in a Mediterranean climate. Eur J Agron 30(1):41–51. doi: 10.1016/j.eja.2008.07.003 CrossRefGoogle Scholar
  22. Celette F, Ripoche A, Gary C (2010) WaLIS-a simple model to simulate water partitioning in a crop association: the example of an intercropped vineyard. Agric Water Manage 97(11):1749–1759. doi: 10.1016/j.agwat.2010.06.008 CrossRefGoogle Scholar
  23. Cellier P, Jacquet A, Bautrais P, Morlat R, Delanchy P (1996) Modélisation du régime thermique des sols de vignoble du Val de Loire: Relations avec des variables utilisables pour la caractérisation des terroirs. (in French). Paper from the first International Terroir Congress 17–18 July 1996, Angers, France, pp 107–112Google Scholar
  24. Chacon JL, Garcia E, Martinez J, Romero R, Gomez S (2009) Impact of the vine water status on the berry and seed phenolic composition of ‘Merlot’ (Vitis vinifera L.) cultivated in a warm climate: consequence for the style of wine. Vitis 48(1):7–9Google Scholar
  25. Champagnol (1984) Eléments de physiologie de la vigne et de viticulture générale. (in French). Champagnol (ed), St-Gely du Fesc, FranceGoogle Scholar
  26. Charters S, Pettigrew S (2007) The dimensions of wine quality. Food Qual Pref 18(7):997–1007. doi: 10.1016/j.foodqual.2007.04.003 CrossRefGoogle Scholar
  27. Chen SH, Jakeman AJ, Norton JP (2008) Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Math Comput Simul 78(2–3):379–400CrossRefGoogle Scholar
  28. Coipel J, Rodriguez Lovelle B, Sipp C, Van Leeuwen C (2006) “Terroir” effect, as a result of environmental stress, depends more on soil depth than on soil type (Vitis vinifera L. cv. Grenache noir, Côtes du Rhône, France, 2000). J Int Sci Vigne Vin 40(4):177–185Google Scholar
  29. Cortell JM, Halbleib M, Gallagher AV, Kennedy JA, Righetti TL (2005) Influence of vine vigor on grape (Vitis vinifera L. cv. Pinot Noir) and wine proanthocyanidins. J Agric Food Chem 53(14):5798–5808. doi: 10.1021/jf0504770 PubMedCrossRefGoogle Scholar
  30. Coulon C, Rioux D, Guillaume S, Charnomordic B, Barbeau G, Thiollet-Scholtus M (2010) Design of an indicator of vine vigor potential conferred by soil (VIPOS), using a fuzzy expert system. Paper from the VIIIe international Terroir Congress, Soave, Italy, pp 87–92Google Scholar
  31. Coulon C, Ganenco A, Neethling E, Thiollet-Scholtus M (2011) Méthode de typologie d’années climatiques de référence à l’usage de la modélisation. Application à la moyenne Vallée de la Loire. (in French). Progrès Agric. Vitic 17–2011:347–353Google Scholar
  32. Courtin, V, Rioux D, Boutin D, Cesbron S, Kasprik A-C (2006) Typologie des vins en rapport avec les facteurs environnementaux du terroir et le cépage. Application au vignoble de Chinon. (in French). Paper from the VIe International Terroir Congress, Bordeaux-Montpellier, FranceGoogle Scholar
  33. Cros MJ, Duru M, Garcia F, Martin-Clouaire R (2003) A biophysical dairy farm model to evaluate rotational grazing management strategies. Agronomie 23(2):105–122. doi: 10.1051/agro:2002071 CrossRefGoogle Scholar
  34. Dai ZW, Vivin P, Barrieu F, Ollat N, Delrot S (2010) Physiological and modelling approaches to understand water and carbon fluxes during grape berry growth and quality development: a review. Aust J Grape Wine Res 16:70–85CrossRefGoogle Scholar
  35. Dalgaard T, Hutchings NJ, Porter JR (2003) Agroecology, scaling and interdisciplinarity. Agric Ecosyst Environ 100(1):39–51. doi: 10.1016/S0167-8809(03)00152-X CrossRefGoogle Scholar
  36. de Turckheim E, Hubert B, Messean A (2009) Concevoir et construire la décision. Quae (ed), Paris, FranceGoogle Scholar
  37. Delabays N, Spring JL, Mermillod G (2006) Essai d’enherbement de la vigne avec des espèces peu concurrentielles: aspects botaniques et malherbologiques. Revue suisse Vitic Arboric Hortic 38(6):343–354Google Scholar
  38. Deloire A, Ojeda H, Zebic O, Bernard N (2005) Influence de l’état hydrique de la vigne sur le style de vin. Progrès Agric Vitic 21:455–462Google Scholar
  39. Dry PR, Loveys BR (1998) Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust J Grape Wine Res 4(3):140–148. doi: 10.1111/j.1755-0238.1998.tb00143.x CrossRefGoogle Scholar
  40. Fernandez Martinez R, Lostado Lorza R, Fernandez Ceniceros J, Martinez-de-Pison Ascacibar FJ (2012) Comparative analysis of learning and meta-learning algorithms for creating models for predicting the probable alcohol level during the ripening of grape berries. Comput Electron Agric 80:54–62CrossRefGoogle Scholar
  41. Garcia de Cortazar Atauri I, Brisson N, Seguin B, Gaudillere JP, Baculat B (2005) Simulation of budbreak date for vine. The BRIN model. Some applications in climate change study. Paper from the XIV International GESCO Viticulture Congress, 23–27 Aug 2005, Geisenheim, Germany, pp 485–490.Google Scholar
  42. Garcia de Cortazar Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.) utilisation dans le cadre d’une étude d’impact du changement climatique à l’échelle de la France. Ph.D. thesis, Ecole Nationale Supérieure Agronomique de Montpellier, 292 ppGoogle Scholar
  43. Garcia de Cortazar Atauri I, Brisson N, Gaudillere JP (2009) Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int J Biometeorol 53(4):317–326. doi: 10.1007/s00484-009-0217-4 PubMedCrossRefGoogle Scholar
  44. Gary C, Payan J-C, Kansou K, Pellegrino A, Wery J (2005) Un outil de diagnostic du vécu hydrique de parcelles viticoles, en relation avec des objectifs de rendement et de qualité. Paper from the XIV International GESCO Viticulture Congress, 23–27 Aug 2005, Geisenheim, Germany, pp 449–454Google Scholar
  45. GIEC (2007) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, Genève, SwedenGoogle Scholar
  46. Girardin P, Bockstaller C, Van der Werf H (1999) Indicators: tools to evaluate the environmental impacts of farming systems. J Sustain Agric 13(4):5–21. doi: 10.1300/J064v13n04_03 CrossRefGoogle Scholar
  47. Girona J, Marsal J, Mata M, Del Campo J, Basile B (2009) Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis vinifera L.) to water stress. Aust J Grape Wine Res 15(3):268–277. doi: 10.1111/j.1755-0238.2009.00059.x CrossRefGoogle Scholar
  48. Goulet E, Barbeau G (2006) Apports des mesures de résistivité électrique du sol dans les études sur le fonctionnement hydrique du système sol/vigne. J Int Sci Vigne Vin 40(2):57–69Google Scholar
  49. Goulet E, Morlat R (2010) The use of surveys among wine growers in vineyards of the middle-Loire Valley (France), in relation to terroir studies. Land Use Policy 28:770–782. doi: 10.1016/j.landusepol.2011.01.003 CrossRefGoogle Scholar
  50. Goulet E, Morlat R, Rioux D, Cesbron S (2004) A calculation method of available soil water content: application to viticultural terroirs mapping of the Loire valley. J Int Sci Vigne Vin 38(4):231–235Google Scholar
  51. Goutouly J-P, Drissi R, Forget D, Gaudillère J-P (2006) Caractérisation de la vigueur de la vigne par l’indice NDVI mesuré au sol. Paper from the International Terroir Congress, Bordeaux-Montpellier, FranceGoogle Scholar
  52. Gray JD, Gibson RJ, Coombe BG, Iland PG, Pattison SJ (1997) Assessment of winegrape value in the vineyard—survey of cv. Shiraz from South Australian vineyards in 1992. Aust J Grape Wine Res 3(3):1–8CrossRefGoogle Scholar
  53. Grelier M, Guillaume S, Tisseyre B, Scholasch T (2007) Precision viticulture data analysis using fuzzy inference systems. J Int Sci Vigne Vin 41(1):19–31Google Scholar
  54. Guillaume S, Magdalena L (2006) Expert guided integration of induced knowledge into a fuzzy knowledge base. Soft Comput 10(9):773–784CrossRefGoogle Scholar
  55. Gutierrez AP, Williams DW, Kido H (1985) A model of grape growth and development: the mathematical structure and biological considerations. Crop Sci 25(5):721–728CrossRefGoogle Scholar
  56. Hardie WJ, Considine JA (1976) Response of grapes to water-deficit stress in particular stages of development. Am J Enol Vitic 27(2):55–61Google Scholar
  57. Havinal MN, Tambe TB, Patil SP (2008) Comparative studies on vine vigour and fruitfulness of grape wine varieties. Asian J Hort 3(1):180–182Google Scholar
  58. Holt HE, Francis IL, Field J, Herderich MJ, Iland PG (2008) Relationships between berry size, berry phenolic composition and wine quality scores for Cabernet Sauvignon (Vitis vinifera L.) from different pruning treatments and different vintages. Aust J Grape Wine Res 14(3):191–202. doi: 10.1111/j.1755-0238.2008.00019.x Google Scholar
  59. Homayouni S, Germain C, Lavialle O, Grenier G, Goutouly JP, Van Leeuwen C, Da Costa JP (2008) Abundance weighting for improved vegetation mapping in row crops: application to vineyard vigour monitoring. Can J Remote Sens 34:S228–S239CrossRefGoogle Scholar
  60. Jackson J (1998) Introduction to expert systems, 3rd edn. Addison Wesley, HarlowGoogle Scholar
  61. Jeuffroy M-H, Bergez J-E, David C, Flenet F, Gate P, Loyce C, Maupas F, Meynard J-M, Reau R, Surleau-Chambenoit C (2008) Utilisation des modèles pour l’aide à la conception et à l’évaluation d’innovations techniques en production végétale: bilan et perspectives. In: Système de culture innovants et durables. Educagri (ed), Paris, pp 109–128Google Scholar
  62. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73(3):319–343. doi: 10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  63. Kaufman M, Tobias S, Schulin R (2009) Quality evaluation of restored soil with a fuzzy logic expert system. Geoderma 151(3–4):209–302.Google Scholar
  64. Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69. doi: 10.1111/j.1755-0238.2009.00077.x CrossRefGoogle Scholar
  65. Kliewer WM, Dokoozlian NK (2005) Leaf area/crop weight ratios of grapevines: influence on fruit composition and wine quality. Am J Enol Vitic 56(2):170–181Google Scholar
  66. Koundouras S, Van Leeuwen C, Seguin G, Glories Y (1999) Influence of water availability on vine vegetative growth, berry ripening and wine characteristics in the Mediterranean zone (example of Nemea, Greece, variety Saint-George, 1997). J Int Sci Vigne Vin 33(4):149–160Google Scholar
  67. Landon JL, Weller K, Harbertson JF, Ross CF (2008) Chemical and sensory evaluation of astringency in Washington State red wines. Am J Enol Vitic 59(2):153–158Google Scholar
  68. Lattey KA, Bramley BR, Francis IL (2010) Consumer acceptability, sensory properties and expert quality judgements of Australian Cabernet Sauvignon and Shiraz wines. Aust J Grape Wine Res 16(1):189–202CrossRefGoogle Scholar
  69. Le Gal PY, Merot A, Moulin CH, Navarrete M, Wery J (2009) A modelling framework to support farmers in designing agricultural production systems. Environ Model Softw 25(2):258–268. doi: 10.1016/j.envsoft.2008.12.013 CrossRefGoogle Scholar
  70. Lebon E, Dumas V, Pieri P, Schultz HR (2003) Modelling the seasonal dynamics of the soil water balance of vineyards. Funct Plant Biol 30(6):699–710CrossRefGoogle Scholar
  71. Lebon E, Pellegrino A, Tardieu F, Lecoeur J (2004) Shoot development in grapevine (Vitis vinifera) is affected by the modular branching pattern of the stem and intra- and inter-shoot trophic competition. Ann Bot 93:236–274CrossRefGoogle Scholar
  72. Lesschaeve I (2003) Evaluating wine “typicité” using descriptive analysis. Paper from the 5th Pangborn sensory science symposiumGoogle Scholar
  73. Louarn G, Dauzat J, Lecoeur J, Lebon E (2008) Influence of trellis system and shoot positioning on light interception and distribution in two grapevine cultivars with different architectures: an original approach based on 3D canopy modeling. Aust J Grape Wine Res 14(3):143–152Google Scholar
  74. Loyce C, Rellier JP, Meynard JM (2002) Management planning for winter wheat with multiple objectives (1): the BETHA system. Agric Syst 72(1):9–31. doi: 10.1016/S0308-521X(01)00064-6 CrossRefGoogle Scholar
  75. Marguerit E, Brendel O, Van Leeuwen C, Delrot S, Ollat N (2011) Grapevine rootstock genetically determine scion transpiration and its response to water deficit: an integrated approach using ecophysiology and quantitative genetics. In: Systems approaches to crop improvement, Harpenden, United Kingdom, pp 89Google Scholar
  76. Martin SR, Dunn GM (2000) Effect of pruning time and hydrogen cyanamide on budburst and subsequent phenology of Vitis vinifera L. variety Cabernet Sauvignon in central Victoria. Aust J Grape Wine Res 6(1):31–39. doi: 10.1111/j.1755-0238.2000.tb00159.x CrossRefGoogle Scholar
  77. Martinez de Toda F, Tardaguila J, Sancha JC (2007) Estimation of grape quality in vineyards using a new viticultural index. Vitis 46(4):168–173Google Scholar
  78. Matthews MA, Anderson MM (1988) Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. Am J Enol Vitic 39(4):313–320Google Scholar
  79. Meynard JM (2008) Produire autrement: réinventer les systèmes de culture. In: Systèmes de culture innovants et durables. Educagri, Paris, pp 11–27Google Scholar
  80. Minet F, Asselin C, Duc D, Barbeau G, Cosneau M, Bouvet MH (2000) Etude de l’adaptation de dix porte-greffe sur cépage Chenin, en Val de Loire, pour la production de vin de l’AOC “Coteaux du Layon”. Progrès Agric Vitic 117(19):410–422Google Scholar
  81. Morlat R (2010) Traité de viticulture de terroir. Lavoisier (ed), Paris, FranceGoogle Scholar
  82. Morlat R, Remoue M, Pinet P (1984) The influence of the planting density and the method of soil management on root growth in a vineyard planted on good soil. Agronomie 4(5):485–491CrossRefGoogle Scholar
  83. Morlat R, Penavayre M, Jacquet A, Asselin C, Lemaitre C (1992) The effects of soils on water status and photosynthesis of grapevines during an exceptionally dry year (1990). Effects on grape ripening. J Int Sci Vigne Vin 26(4):197–220Google Scholar
  84. Morlat R, Jacquet A, Asselin C (1997) Variabilité de la précocité de la vigne en Val de Loire: Rôle du terroir et du millésime, conséquences sur la composition de la baie. Revue Française Oenologie 165:11–22Google Scholar
  85. Morlat R, Barbeau G, Asselin C, Besnard E (2001) Terroir Viticole: de la recherche à la valorisation par le vigneron. In: Un raisin de qualité: de la vigne à la cuve. J Int Sci Vigne Vin (Special issue): 21–33Google Scholar
  86. Murisier F, Zufferey V (2006) The influence of plant density and hedgerow height on grape and wine quality. Trial on chasselas vines in leytron (Wallis, CH). Revue suisse Vitic Arboric Hortic 38(5):271–276Google Scholar
  87. Nendel C (2009) Grapevine bud break prediction for cool winter climates. Int J Biometeorol 54(3):231–241. doi: 10.1007/s00484-009-0274-8 PubMedCrossRefGoogle Scholar
  88. Nendel C, Kersebaum KC (2004) A simple model approach to simulate nitrogen dynamics in vineyard soils. Ecol Model 177(1/2):1–15CrossRefGoogle Scholar
  89. OIV (2004) Development of sustainable viticulture. Résolution CST 01/2004. International organisation of vine and wineGoogle Scholar
  90. OIV (2010) Définition of vitivinicultural terroir. Résolution VITI 333/2010. International organisation of vine and wineGoogle Scholar
  91. Ojeda H (1999) Influence de la contrainte hydrique sur la croissance du péricarpe et sur l’évolution des phénols des baies de raisin (Vitis vinifera L.) cv. Syrah. Ph.D. thesis, University of Montpellier, FranceGoogle Scholar
  92. Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and post-veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz Am J Enol Vitic 53(4):261–267Google Scholar
  93. Orlandini S, Dalla Marta A, Matti GB (2006) Modelling grapevine responses to different training systems. Acta Hortic 707:49–56Google Scholar
  94. Pallas B, Louarn G, Christophe A, Lebon E, Lecoeur J (2008) Influence of intra-shoot trophic competition on shoot development in two grapevine cultivars (Vitis vinifera). Physiol Plant 134(1):49–63PubMedCrossRefGoogle Scholar
  95. Paoli J-N, Tisseyre B, Zebic O, Guillaume S (2005) Détermination et cartographie des potentialités viticoles: une approche experte. Progrès Agric Vitic 23:508–511Google Scholar
  96. Parker AK, Garcia de Cortazar Atauri I, Van Leeuwen C, Chuine I (2011) General phenological model to characterise the timing of flowering and veraison of Vitis viniferaL.Google Scholar
  97. Passioura JB (1996) Simulation models: science, snake oil, education or engineering? Agron J 88:690.694CrossRefGoogle Scholar
  98. Pellegrino A, Goze E, Lebon E, Wery J (2006) A model-based diagnosis tool to evaluate the water stress experienced by grapevine in field sites. Eur J Agron 25(1):49–59CrossRefGoogle Scholar
  99. Poni S, Casalini L, Bernizzoni F, Civardi S, Intrieri C (2006) Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. Am J Enol Vitic 57(4):397–407Google Scholar
  100. Pouget R (1963) Recherches physiologiques sur le repos végétatif de la vigne (Vitis vinifera): la dormance des bourgeons et le mecanisme de sa disparition. Ann Amelior Plantes 13(special issue 1):1–27Google Scholar
  101. Reynolds AG, Heuvel JEV (2009) Influence of grapevine training systems on vine growth and fruit composition: a review. Am J Enol Vitic 60(3):251–268Google Scholar
  102. Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (1998) Traité d’oenologie. 1. Microbiologie du vin. Vinifications (ed) DUNOD, ParisGoogle Scholar
  103. Riou C (1994) The effect of climate on grape ripening: application to the zoning of sugar content in the European community. Office Publ. Officielles des CE, EUR 15863 FR/EN, Luxembourg, 322ppGoogle Scholar
  104. Riou C, Lebon E (2000) Application d’un modèle de bilan hydrique et de la mesure de la température de couvert au diagnostic du stress hydrique de la vigne à la parcelle. Bull OIV 73(837–838):755–764Google Scholar
  105. Rives M (2000) Vigour, pruning, and cropping in the grapevine (Vitis vinifera L.). II. Experiments on vigour, pruning and cropping. Agronomie 20(2):205–213. doi: 10.1051/agro:2000120 CrossRefGoogle Scholar
  106. Roby G, Harbertson JF, Adams DA, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res 10(2):100–107. doi: 10.1111/j.1755-0238.2004.tb00012.x CrossRefGoogle Scholar
  107. Sadras VO, Petrie PR (2011) Climate shifts in south-eastern Australia: early maturity of Chardonnay. Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Aust J Grape Wine Res 17(2):199–205. doi: 10.1111/j.1755-0238.2011.00138.x CrossRefGoogle Scholar
  108. Sadras VO, Petrie PR (2012) Predicting the time course of grape ripening. Aust J Grape Wine Res 18(1):48–56. doi: 10.1111/j.1755-0238.2011.00169.x CrossRefGoogle Scholar
  109. Sadras VO, Soar C, Petrie PR (2007) Quantification of time trends in vintage scores and their variability for major wine regions of Australia. Aust J Grape Wine Res 13(2):117–123. doi: 10.1111/j.1755-0238.2007.tb00242.x CrossRefGoogle Scholar
  110. Sebillotte M (1974) Agronomie et agriculture. Essai d’analyse des taches de l’agronome. Cahier ORSTOM 24:3–25Google Scholar
  111. Sinclair TR, Seligman NG (1996) Crop modeling: from infancy to maturity. Agron J 88(5):698–704. doi: 10.2134/agronj1996.00021962008800050004x CrossRefGoogle Scholar
  112. Smart R, Robinson M (1991) Sunlight into wine. Winetitles (ed), Broadview, AustraliaGoogle Scholar
  113. Smart DR, Schwass E, Lakso A, Morano L (2006) Grapevine rooting patterns: a comprehensive analysis and a review. Am J Enol Vitic 57(1):89–104Google Scholar
  114. Soar CJ, Sadras VO, Petrie PR (2008) Climate drivers of red wine quality in four contrasting Australian wine regions. Aust J Grape Wine Res 14(2):78–90. doi: 10.1111/j.1755-0238.2008.00011.x CrossRefGoogle Scholar
  115. Tesic D, Woolley DJ, Hewett EW, Martin DJ (2002) Environmental effects on cv Cabernet Sauvignon (Vitis vinifera L.) grown in Hawke’s Bay, New Zealand. 1. Phenology and characterisation of viticultural environments. Aust J Grape Wine Res 8(1):15–26. doi: 10.1111/j.1755-0238.2002.tb00208.x CrossRefGoogle Scholar
  116. Tesic D, Keller M, Hutton RJ (2007) Influence of vineyard floor management practices on grapevine vegetative growth, yield, and fruit composition. Am J Enol Vitic 58(1):1–11Google Scholar
  117. Thiollet-Scholtus M (2004) Construction d’un indicateur de qualité des eaux de surface vis-à-vis des produits phytosanitaires à l’échelle du bassin versant viticole. Ph.D. thesis, Institut national Polytechnique de Lorraine, Colmar, France. Available from http://www.inra.fr/theses/these-integrale/Theses/thiollet/pdf/these.pdf
  118. Tregoat O, Ollat N, Grenier G, Leeuwen CV (2001) Comparative study of the accuracy and speed of various methods for estimating vine leaf area. J Int Sci Vigne Vin 35(1):31–39Google Scholar
  119. Trnka M, Brazdil R, Dubrovsky M, Semeradova D, Stepanek P, Dobrovolny P, Mozny M, Eitzinger J, Malek J, Formayer H, Balek J, Zalud Z (2011) A 200-year climate record in Central Europe: implications for agriculture. Agron Sustain Dev. doi: 10.1007/s13593-011-0038-9
  120. Trought MCT, Dixon R, Mills T, Greven M, Agnew R, Mauk JL, Praat JP (2008) The impact of differences in soil texture within a vineyard on vine vigour, vine earliness and juice composition. J Int Sci Vigne Vin 42(2):67–72Google Scholar
  121. Ubalde JM, Sort X, Poch RM, Porta M (2007) Influence of edapho-climatic factors on grape quality in Conca de Barbera vineyards (Catalonia, Spain). J Int Sci Vigne Vin 41(1):33–41Google Scholar
  122. Valdes H, Celette F, Fermaud M, Cartolaro P, Clerjeau M, Gary C (2005) How to evaluate the influence of vegetative vigour in vine sensitivity to cryptogamic diseases? Paper from the XIV International GESCO Viticulture Congress, Geisenheim, Germany, pp 832–838Google Scholar
  123. Van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55(3):207–217Google Scholar
  124. Van Leeuwen C, Tregoat O, Chone X, Bois B, Pernet D, Gaudillere JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purpose ? J Int Sci Vigne Vin 43(3):121–134Google Scholar
  125. Vaudour E, Morlat R, Van Leeuwen C, Doledec A-F (2005) Terroirs viticoles et sols. Dunod (ed), Paris, FranceGoogle Scholar
  126. Vins de Loire. http://www.vinsdeloire.fr/SiteGP/FR/. Accessed 23 Mar 2011
  127. Vivin P, Castelan M, Gaudillère J-P (2002) A source/sink model to simulate seasonal allocation of carbon in grapevine. Acta Hortic 584:43–56Google Scholar
  128. Walker RR, Zhang X, Godwin DC, White R, Clingeleffer P (2005) Vinelogic growth and development simulation model – rootstock and salinity effects on vine performance. Paper from the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 Aug 2005Google Scholar
  129. Zadeh LA (1965) Fuzzy sets. Info Control 8:338–353CrossRefGoogle Scholar
  130. Zhu Y, Cao WX, Dai TB, Tian YC, Yao X (2007) A knowledge model system for wheat production management. Pedosphere 17(2):172–181. doi: 10.1016/S1002-0160(07)60023-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Cécile Coulon-Leroy
    • 1
    Email author
  • René Morlat
    • 1
  • Gérard Barbeau
    • 1
  • Christian Gary
    • 2
  • Marie Thiollet-Scholtus
    • 1
  1. 1.INRA UE1117 Vigne et Vin, UMT ViniteraBeaucouzéFrance
  2. 2.INRA UMR1230 SystemMontpellier Cedex 2France

Personalised recommendations