Skip to main content

Supergravity: An Anthology of Solutions

  • Chapter
Gravity, a Geometrical Course
  • 2612 Accesses

Abstract

Chapter 9 presents a limited anthology of supergravity solutions aimed at emphasizing a few relevant new concepts. Relying on the special geometries described in Chap. 8 a first section contains an introduction to supergravity spherical Black Holes, to the attraction mechanism and to the interpretation of the horizon area in terms of a quartic symplectic invariant of the U duality group. The second and third sections deal instead with flux compactifications of both M-theory and type IIA supergravity. The main issue is that of the relation between supersymmetry preservation and the geometry of manifolds of restricted holonomy. The problem of supergauge completion and the role of orthosymplectic superalgebras is also emphasized. Appendices contain the development of gamma matrix algebra necessary for the inclusion of spinors, details on superalgebras and the user guide to Mathematica codes for the computer aided calculation of Einstein equations.

O tiger’s heart wrapped in a woman’s hide

William Shakespeare

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we illustrate below the attraction mechanism corresponds to the following notable property of supergravity black holes which was discovered by Ferrara and Kallosh in 1995 [1, 2]: independently from their values at spatial infinity, the scalar fields flow to universal fixed values at the event horizon, dictated solely by the electromagnetic charges of the hole.

  2. 2.

    In the supergravity framework BPS solutions are those that preserve a certain amount of supersymmetry, namely that admit a certain number of so named Killing spinors, i.e. of supersymmetry parameters such that supersymmetry transformations along them leave the chosen solution invariant.

  3. 3.

    In [18] it was shown that every orbit of solutions contains a representative where the Taub-NUT charge is zero. Alternatively from a dynamical system point of view the Taub-NUT charge can be annihilated by setting a constraint which is consistent with the Hamiltonian and which reduces the dimension of the system by one unit. The problem of black hole physics is therefore equivalent to the sigma model based on an appropriate codimension one hypersurface in the \( \mathcal{Q} \) manifold.

  4. 4.

    See for instance the lecture notes [19].

  5. 5.

    The special overall normalization of the Poincaré metric is chosen in order to match the general definitions of special geometry applied to the present case.

  6. 6.

    By τ α we denote the gamma matrices in 7-dimensions, satisfying the Clifford algebra {τ α,τ β}=−δ αβ. With the symbol \(\tau^{\alpha_{1}\dots\alpha_{n}}\) we denote, as usual, the antisymmetrized product of n such matrices.

  7. 7.

    The theory of Sasakian manifolds, as applied to supergravity compactifications was discussed in [39]. In short an odd dimensional manifold is named Sasakian if the even dimensional cone constructed over it has vanishing first Chern class. After several manipulations this implies that the Sasakian manifold is an S 1-fibre bundle over a suitable complex base manifold.

  8. 8.

    With respect to the results obtained for the mini superspace extension of M-theory configuration everything is identical in (9.4.51)–(9.4.54) except the obvious reduction of the index range of (α,β,…) from 7 to 6-values. The only difference is in (9.4.55) where the last contribution proportional to the Kähler form is an essential novelty of this new type of compactification.

References

  1. Ferrara, S., Kallosh, R.: Supersymmetry and attractors. Phys. Rev. D 54, 1514–1524 (1996). hep-th/9602136

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ferrara, S., Kallosh, R., Strominger, A.: N=2 extremal black holes. Phys. Rev. D 52, 5412–5416 (1995). hep-th/9508072

    Article  MathSciNet  ADS  Google Scholar 

  3. Breitenlohner, P., Maison, D., Gibbons, G.W.: Four-dimensional black holes from Kaluza-Klein theories. Commun. Math. Phys. 120, 295 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ferrara, S., Sabharwal, S.: Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bergshoeff, E., Chemissany, W., Ploegh, A., Trigiante, M., Van Riet, T.: Generating geodesic flows and supergravity solutions. Nucl. Phys. B 812, 343 (2009). arXiv:0806.2310

    Article  ADS  MATH  Google Scholar 

  6. Gibbons, G.W., Kallosh, R., Kol, B.: Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992–4995 (1996). hep-th/9607108

    Article  ADS  Google Scholar 

  7. Goldstein, K., Iizuka, N., Jena, R.P., Trivedi, S.P.: Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005). arXiv:hep-th/0507096

    Article  MathSciNet  ADS  Google Scholar 

  8. Tripathy, P.K., Trivedi, S.P.: Non-supersymmetric attractors in string theory. J. High Energy Phys. 0603, 022 (2006). arXiv:hep-th/0511117

    Article  MathSciNet  ADS  Google Scholar 

  9. Kallosh, R.: New attractors. J. High Energy Phys. 0512, 022 (2005). arXiv:hep-th/0510024

    Article  MathSciNet  ADS  Google Scholar 

  10. Giryavets, A.: New attractors and area codes. J. High Energy Phys. 0603, 020 (2006). arXiv:hep-th/0511215

    Article  MathSciNet  ADS  Google Scholar 

  11. Kallosh, R., Sivanandam, N., Soroush, M.: The non-BPS black hole attractor equation. J. High Energy Phys. 0603, 060 (2006). arXiv:hep-th/0602005

    Article  MathSciNet  ADS  Google Scholar 

  12. Bellucci, S., Ferrara, S., Marrani, A.: On some properties of the attractor equations. Phys. Lett. B 635, 172 (2006). arXiv:hep-th/0602161

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bellucci, S., Ferrara, S., Gunaydin, M., Marrani, A.: Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043–5098 (2006). hep-th/0606209

    Article  MathSciNet  ADS  Google Scholar 

  14. Andrianopoli, L., D’Auria, R., Ferrara, S., Trigiante, M.: Extremal black holes in supergravity. Lect. Notes Phys. 737, 661–727 (2008). hep-th/0611345

    Article  MathSciNet  ADS  Google Scholar 

  15. Frè, P., Gargiulo, F., Rulik, K., Trigiante, M.: The general pattern of Kac Moody extensions in supergravity and the issue of cosmic billiards. Nucl. Phys. B 741, 42 (2006). arXiv:hep-th/0507249

    Article  ADS  MATH  Google Scholar 

  16. Frè, P., Sorin, A.S.: The arrow of time and the Weyl group: All supergravity billiards are integrable. Nucl. Phys. B 815, 430 (2009). arXiv:0710.1059

    Article  ADS  MATH  Google Scholar 

  17. Frè, P., Sorin, A.S.: The integration algorithm for nilpotent orbits of G/H ⋆ lax systems: For extremal black holes. arXiv:0903.3771

  18. Frè, P., Sorin, A.S., Trigiante, M.: Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits. arXiv:1103.0848 [hep-th]

  19. D’Auria, R., Frè, P.: BPS black-holes in supergravity: Duality groups, p-branes, central charges and entropy. In: Frè, P., Gorini, V., Magli, G., Moschella, U. (eds.) Classical and Quantum Black Holes, pp. 137–272. IOP Publishing, Bristol (1999)

    Google Scholar 

  20. Ceresole, A., Ferrara, S., Marrani, A.: Small N=2 extremal black holes in special geometry. arXiv:1006.2007v1

  21. Ceresole, A., Dall’Agata, G., Ferrara, S., Yeranyan, A.: First order flows for N=2 extremal black holes and duality invariants. arXiv:0908.1110v2

  22. Kaste, P., Minasian, R., Tommasiello, A.: Supersymmetric M-theory compactifications with fluxes on seven manifolds with G-structures. J. High Energy Phys. 0307, 004 (2003). arXiv:hep-th/0303127

    Article  ADS  Google Scholar 

  23. Castellani, L., D’Auria, R., Frè, P.: SU(3)×SU(2)×U(1) from D=11 supergravity. Nucl. Phys. B 239, 610 (1984)

    Article  ADS  Google Scholar 

  24. Freund, P.G.O., Rubin, M.A.: Dynamics of dimensional reduction. Phys. Lett. B 97, 233 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  25. Bilal, A., Derendinger, J.P., Sfetsos, K.: (Weak) G2 holonomy from self duality, flux and supersymmetry. Nucl. Phys. B 628, 112 (2002). arXiv:hep-th/0111274

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D’Auria, R., Frè, P.: On the fermion mass spectrum of Kaluza Klein supergravity. Ann. Phys. 157, 1 (1984)

    Article  ADS  Google Scholar 

  27. Englert, F.: Spontaneous compactification of 11-dimensional supergravity. Phys. Lett. B 119, 339 (1982)

    Article  ADS  Google Scholar 

  28. Awada, M.A., Duff, M.J., Pope, C.N.: N=8 supergravity breaks down to N=1. Phys. Rev. Lett. 50, 294 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  29. D’Auria, R., Frè, P., van Nieuwenhuizen, P.: N=2 matter coupled supergravity from compactification on a coset G/H possessing an additional killing vector. Phys. Lett. B 136, 347 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  30. Castellani, L., Romans, L.J.: N=3 and N=1 supersymmetry in a new class of solutions for D=11 supergravity. Nucl. Phys. B 238, 683 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  31. Castellani, L., Romans, L.J., Warner, N.P.: A classification of compactifying solutions for D=11 supergravity. Nucl. Phys. B 241, 429 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  32. Freedman, D.Z., Nicolai, H.: Multiplet shortening in Osp(N|4). Nucl. Phys. B 237, 342 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Ceresole, A., Frè, P., Nicolai, H.: Multiplet structure and spectra of \( \mathcal{N}=2 \) compactifications. Class. Quantum Gravity 2, 133 (1985)

    Article  ADS  MATH  Google Scholar 

  34. Casher, A., Englert, F., Nicolai, H., Rooman, M.: The mass spectrum of supergravity on the round seven sphere. Nucl. Phys. B 243, 173 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  35. Duff, M.J., Nisson, B.E.W., Pope, C.N.: Kaluza Klein supergravity. Phys. Rep. 130, 1 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  36. Billó, M., Fabbri, D., Frè, P., Merlatti, P., Zaffaroni, A.: Shadow multiplets in AdS(4)/CFT(3) and the super-Higgs mechanism. Nucl. Phys. B 591, 139 (2000). arXiv:hep-th/0005220

    Article  ADS  MATH  Google Scholar 

  37. Billó, M., Fabbri, D., Frè, P., Merlatti, P., Zaffaroni, A.: Rings of short N=3 superfields in three dimensions and M-theory on AdS4×N (0,1,0). Class. Quantum Gravity 18, 1269 (2001). arXiv:hep-th/0005219

    Article  ADS  MATH  Google Scholar 

  38. Frè, P., Gualtieri, L., Termonia, P.: The structure of N=3 multiplets in AdS4 and the complete Osp(3|4)×SU(3) spectrum of M-theory on AdS4×N (0,1,0). Phys. Lett. B 471, 27 (1999). arXiv:hep-th/9909188

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Fabbri, D., Frè, P., Gualtieri, L., Reina, C., Tomasiello, A., Zaffaroni, A., Zampa, A.: 3D superconformal theories from Sasakian seven-manifolds: New nontrivial evidences for AdS(4)/CFT(3). Nucl. Phys. B 577, 547 (2000). arXiv:hep-th/9907219

    Article  ADS  MATH  Google Scholar 

  40. Fabbri, D., Frè, P., Gualtieri, L., Termonia, P.: M-theory on AdS4×M (111): The complete Osp(2|4)×SU(3)×SU(2) spectrum from harmonic analysis. Nucl. Phys. B 560, 617 (1999). arXiv:hep-th/9903036

    Article  ADS  MATH  Google Scholar 

  41. D’Auria, R., Frè, P.: Universal Bose-Fermi mass-relations in Kaluza-Klein supergravity and harmonic analysis on coset manifolds with killing spinors. Ann. Phys. 162, 372 (1985)

    Article  ADS  Google Scholar 

  42. Frè, P.: Gaugings and other supergravity tools of p-brane physics. arXiv:hep-th/0102114

  43. Frè, P., Grassi, P.A.: Pure spinor formalism for Osp(N|4) backgrounds. arXiv:0807.0044 [hep-th]

  44. Castellani, L., D’Auria, R., Frè, P.: Supergravity and Superstrings: A Geometric Perspective. World Scientific, Singapore (1991)

    Google Scholar 

  45. D’Auria, R., Frè, P., Grassi, P.A., Trigiante, M.: Superstrings on AdS4×CP3 from supergravity. Phys. Rev. D 79, 086001 (2009). arXiv:0808.1282 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  46. Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. arXiv:0806.1218 [hep-th]

  47. Benna, M., Klebanov, I., Klose, T., Smedback, M.: Superconformal Chern-Simons theories and AdS4/CFT3 correspondence. arXiv:0806.1519 [hep-th]

  48. Schwarz, J.H.: Superconformal Chern-Simons theories. J. High Energy Phys. 0411, 078 (2004). arXiv:hep-th/0411077

    Article  ADS  Google Scholar 

  49. Bagger, J., Lambert, N.: Comments on multiple M2-branes. J. High Energy Phys. 0802, 105 (2008). arXiv:0712.3738 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  50. Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  51. Bagger, J., Lambert, N.: Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). arXiv:hep-th/0611108

    Article  MathSciNet  ADS  Google Scholar 

  52. Gustavsson, A.: Algebraic structures on parallel M2-branes. arXiv:0709.1260 [hep-th]

  53. Gustavsson, A.: Selfdual strings and loop space Nahm equations. J. High Energy Phys. 0804, 083 (2008). arXiv:0802.3456 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  54. Distler, J., Mukhi, S., Papageorgakis, C., Van Raamsdonk, M.: M2-branes on M-folds. J. High Energy Phys. 0805, 038 (2008). arXiv:0804.1256 [hep-th]

    Article  ADS  Google Scholar 

  55. Lambert, N., Tong, D.: Membranes on an orbifold. arXiv:0804.1114 [hep-th]

  56. Arutyunov, G., Frolov, S.: Superstrings on AdS4×CP3 as a coset sigma-model. arXiv:0806.4940 [hep-th]

  57. Stefanski, B. Jr.: Green-Schwarz action for type IIA strings on AdS4×CP3. arXiv:0806.4948 [hep-th]

  58. Bonelli, G., Grassi, P.A., Safaai, H.: Exploring pure spinor string theory on \(\mathrm{AdS}_{4}\times\mathbb{CP}^{3}\). arXiv:0808.1051 [hep-th]

  59. Gomis, J., Sorokin, D., Wulff, L.: The complete AdS4×CP3 superspace for the type IIA superstring and D-branes. J. High Energy Phys. 0903, 015 (2009). arXiv:0811.1566 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  60. Frè, P., Grassi, P.A.: Pure spinor formalism for Osp(N|4) backgrounds. arXiv:0807.0044 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frè, P.G. (2013). Supergravity: An Anthology of Solutions. In: Gravity, a Geometrical Course. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5443-0_9

Download citation

Publish with us

Policies and ethics