Skip to main content

Poly-Microbial Interaction with Human Papilloma Virus Leading to Increased Risk for Head and Neck Squamous Cell Carcinoma and Oral Squamous Cell Carcinomas

  • Chapter
  • First Online:

Abstract

750 bacterial taxa reside in the oral pharynx and oral cavity with additional populations of fungi and viruses. This initial microbial presence is independent of host inflammatory response and produces a persistent level of microbial populations. In time a dependent phase characterized by a constant level of inflammatory host responses becomes evident that can overwhelm constitutive mucosa protection to initiate a process of epithelial cell transformation after additional challenges are presented (e.g., oxidative stress, DNA damages). For example, ethyl alcohol products and diets high in glucose are metabolized and increase microbial proliferation and attachment to oral keratinocytes. One result is release of carcinogens such as acetaldehyde. Consequently a loss of epithelial mucosa intercellular attachment and integrity is expected to create more access to basal oral keratinocyte populations by human papilloma virus (HPV) and oral microbes such as Streptococci sp. This interaction increases risk for malignant transformation as HPV subtypes such as 16 initiate oncogenic changes associated with head and neck squamous cell carcinoma (HNSCC). In contrast the oncogenic status for Streptococci sp. is unclear but there are similarities between these two different types of microbes. These include transmission through sexual activity, oropharyngeal colonization, a similar means for attachment using heparan sulfate binding proteins, and a activation of particular differentiation and cell growth regulatory pathways (e.g., EGFr/MAPKp38/PTEN/AKT/JNK/c-fos/myc/HIFs-Cyclin D1-p16-p21waf1/CIPI- p53-Rb). Ultimately, cooperation between Streptococci sp. and HPV 16 results in a loss of differentiation of keratinocytes and malignant transformation particularly in environments that include metabolism of tobacco derived poly-cyclic aromatic hydrocarbons or ethyl alcohol to produce DNA damage (bulky adducts) in basal keratinocyte populations. Expansion of transformed clones of these damaged epithelial cells is associated with migration through basement membrane and underlying stroma. Presence of a robust and complex cooperation between microbes requires consideration as important etiologic factors for HNSCC.

Abstract

Infections by oral bacteria such as Streptococci sp. often occur in head and neck regions because of direct contact and intermittently from sexual activity. Therefore persistent local colonization of oropharynx, hypopharynx, larynx, and other areas of the head and neck can occur because these are also sites for viral infections such as, Human papilloma viruses (HPV). HPV of various subtypes are more likely to result from sexual activity but HPV infection of oncogenic subtypes (e.g., 16) increase risk for head and neck squamous cell carcinoma (HNSCC). Moreover, both types of microorganisms target keratinocytes following changes in environment. Survival and attachment by Streptococci sp. and HPV is a product of binding to oral keratinocyte cell surface heparan sulfate proteoglycan binding proteins (HSGBPs). An initial microbial proliferation phase is independent of host inflammatory response followed by a dependent phase that includes a host response. Presence of microbes induces innate and acquired inflammatory activities because foreign microbial glycoproteins and proteoglycans accumulate. Furthermore, attachment by microbes to oral keratinocytes disrupts normal intercellular attachment, produces aberrant exogenous and endogenous signals (e.g., release of IL-6, IL-8, Transforming growth factors, Tumor necrosis related proteins, etc.) that lead to a loss of mucosa integrity. Access by microorganisms to mucosa basement membrane, stromal tissues, and selective stem cell keratinocyte population results from these events leading to increased transformation with persistent DNA damage of keratinocytes. Environmental factors such as ethyl alcohol (ETOH) that are metabolized by Streptococci sp., other microbes and oral keratinocytes, are responsive to increased levels of metabolized ETOH which produces acetaldehyde (AA), a DNA damaging agent and carcinogen. Eventually malignant clones form and expand to lead to HNSCC or oral squamous cell carcinoma (OSCC).

There is a paucity of studies that describe bacterial interactions with HPV in details that elucidate our understanding of biologic features that lead to a malignant oral keratinocyte phenotype. In this review we provide hypotheses and some preliminary observations that hopefully enhance this understanding of microorganism interaction with HPV infected oral keratinocytes and risk for HNSCC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

HPV:

Human Papilloma Virus

HNSCC:

Head & Neck Squamous Cell Carcinoma

HSGBPs:

Heparan Sulfate Proeoglycan Binding Proteins

DNA:

Deoxyribonucleic Acid

ETOH:

Ethyl Alcohol

AA:

Acetaldehyde

OSCC:

Oral Squamous Cell Carcinoma

DB[a,1]P:

Dibenz[a,1]pyrene

ADH:

Alcohol Dehydrogenase

ALDH:

Aldehyde Dehydogenase

HOK:

HOK Human Oral Kenatinocytes

DMEM:

Dulbecco's Modified Eagle's Medium

CCD:

Charge Coupled Device

MDA:

Malondialdehyde

RNA:

Ribonucleic Acid

PDZ:

Post-synaptic Density Proteins

ZO:

Zona Occludens

GTP:

Guanosine Triphosphate

JAMS:

Junctional Adhesion Molecules

PMN:

Polymorphonuclear Leukocytes

LPS:

Lipopolysaccharide

EMT:

Epithelial Mesenchymal Transition

Fc:

Fragment, crystallizable

VEGF:

Vascular Endothelial Growth Factor

FGF:

Fibroblast Growth Factor

BRK:

Baby Rat Kidney

GAG:

Glycosaminoglycan

References

  • CA A Cancer Journal for Clinicians, 59: pp.225–249, 2009.

    Google Scholar 

  • Batsakis, J.G., Clinical Pathology of Oral Cancer, in Oral Cancer, J.P. Shah, N.W. Johnson, and J.G. Batsakis, Editors. 2003, Martin Dunitz: London.

    Google Scholar 

  • Suarez E, Cabo WA, Herandez EY, Diaz EC, Figuero NR, and Ortiz AP. Age-standardized incidence and mortality rates of oral and pharyngeal cancer in Puerto Rico and among Non-Hispanics Whites, Non-Hispanics Blacks, and Hispanics in the USA. BMC Cancer. 9: pp.129–138, 2009.

    PubMed  Google Scholar 

  • Zini A, Czerninski R, Sgan-Cohen HD. Oral cancer over four decades: epidemiology, trends, histology, and survival by anatomical sites. J Oral Pathol Med. 39(4): pp.299–305, 2010.

    PubMed  Google Scholar 

  • Chaturvedi AK, Engles EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-Related and Unrelated oral squamous cell carcinoma in the United States. J. of Clin. Oncol. 26: pp.612–619, 2008.

    Google Scholar 

  • Dayyani F, Etzel CJ, Liu M, Ho CH, Lippman SM, Tsao AS. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival I head and neck squamous cell carcinoma (HNSCC). Head and Neck Oncol. 2: pp.15–26, 2010.

    Google Scholar 

  • Woolgar, J.A. and A. Triantafyllou, Pitfalls and procedures in the histopathological diagnosis of oral and oropharyngeal squamous cell carcinoma and a review of the role of pathology in prognosis. Oral Oncol, 45(4–5): pp. 361–85, 2009.

    PubMed  Google Scholar 

  • Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: Its role in pathogenesis and clinical implications. Clin. Cancer Res. 15: 6758–6762, 2009.

    PubMed  CAS  Google Scholar 

  • Goon PKC, Stanley MA, Ebmeyer J, Steinstrasser L, Upile T, Jerjes W, Bernal-Sprekelsen M, Gorner M, Sudhoff HH. HPV & head and neck: A descriptive update. Head and Neck Oncology. 1: pp.36-36–44, 2009.

    Google Scholar 

  • Campisi G, Panzarella V, Giuliani M, Lajolo C, Di Fede O, Falaschini S, Di Liberto C, Scully C, Lo Muzio L. Human papillomavirus: Its identikit and controversial role in oral oncogenesis, premalignant and malignant lesions (Review). Int. J. of Oncol. 30: pp. 813–823, 2007.

    CAS  Google Scholar 

  • Guha N, Boffetta P, Filho VW, Neto JE, Shangina O, Zaridze D, Curado MP, Koifman S, Matos E, Menezes A, Szeszenia-Dabrowska N, Fernandez L, Mates D, Daudt AW, Lissowka J, Dikshit R, Brennan P. Oral health and risk of squamous cell carcinoma of the head and neck and esophagus: results of two multicentric case-control studies. Amer J of Epidemiol. 166: pp.1159–1173, 2007.

    Google Scholar 

  • Meurman JK, Uittamo J. Oral micro-organisms in the etiology of cancer. Review article. Acta Odontologica Sandinavica. 66: pp. 321–326, 2008.

    Google Scholar 

  • Woolgar, J.A., Histopathological prognosticators in oral and oropharyngeal squamous cell carcinoma. Oral Oncol. 42(3): pp.229–39, 2006.

    PubMed  Google Scholar 

  • Hooper SJ, Wilson MJ, Crean SJ. Exploring the link between microorganisms and oral cancer: A systematic review of the literature. Head and Neck. 31: pp.1228–1239, 2009.

    PubMed  Google Scholar 

  • Fitzpatrick SG, Katz J. The association between periodontal disease and cancer: A review of the literature. J. of Dentistry. 38: pp. 83–95, 2010.

    Google Scholar 

  • Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. The Lancet Oncology, 9(6): pp.550 – 558, 2008.

    PubMed  Google Scholar 

  • Homann N, Tillonen J, Rintamaki H, Salaspuro M, Lindqvist C, Meurman JH. Poor dental status increases acetaldehyde production from ethanol in saliva: a possible link to increased oral cancer risk among heavy drinkers. Oral Oncology. 37: pp. 153–58, 2001.

    PubMed  CAS  Google Scholar 

  • Rosenquist K, Wennerberg J, Schildt EB, Bladström A, Göran Hansson B, Andersson G. Oral status, oral infections and some lifestyle factors as risk factors for oral and oropharyngeal squamous cell carcinoma. A population-based case-control study in southern Sweden. Acta Otolaryngol. 125(12) pp.1327–36, 2005.

    PubMed  Google Scholar 

  • Park NH, Gujuluva CN, Baek JH, Cherrick HM, Shin KM, Min BM. Combined oral carcinogenicity of HPV-16 and benzo(a)pyrene: an in vitro multistep carcinogenesis model. Oncogene. 10: pp.2145–2153, 1995.

    PubMed  CAS  Google Scholar 

  • Lugakinggira M, Schwartz J. Ethanol Response in Oral Bacteria and Keratinocytes and Malignant Change. IADR, 87 General Meeting, #118456, 2009.

    Google Scholar 

  • Lugakinggira M, Schwartz J. Streptococcus mutans and Oral Keratinocyte Interactions during Exposure to Ethyl Alcohol and Malignant Transformation. AAOMS Conference, Chicago 2010.

    Google Scholar 

  • Homann N , Tillonen J , Meurman JH , Rintamäki H , Lindqvist C, Rautio M , Jousimies-Somer H , Salaspuro M. Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer. Carcinogenesis. 21(4): pp. 663–8, 2000.

    PubMed  CAS  Google Scholar 

  • Brown AT,Patterson CE. Ethanol production and alcohol dehydrogenase activity in Streptococcus mutans. Archives of Oral Biology. 18: pp. 127–133–52, 1973,

    Google Scholar 

  • Yokoyama A, Omori T. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and risk for esophageal and head and neck cancers. Jpn J Clin Oncol. 33(3): pp.111–21, 2003.

    PubMed  Google Scholar 

  • Timar J, Lapis K, Dudas J, Sebestyen Am Kopper L, Kovalszky. Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Seminar. Cancer Biology. 12: pp173–186, 2002.

    Google Scholar 

  • Whittaker CJ, Klier CM,Kolenbrander PE. Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50: pp.5, 1996.

    Google Scholar 

  • Stinson MW, Levine MJ. Modulation of intergeneric adhesion of oral bacteria by human saliva. Crit Rev Oral Biol Med. 4(3–4): pp.309–14, 1993.

    PubMed  CAS  Google Scholar 

  • Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 29: pp.223–237, 2010.

    PubMed  CAS  Google Scholar 

  • Beauvais DM, Rapraeger AC. Syndecans in tumor cell adhesion and signaling. Reproductive Biol. And Endocrinology. 2: pp.3–15, 2004.

    Google Scholar 

  • Yakushi T, Matsushita K. Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol. 86(5): pp.1257–1265, 2010.

    PubMed  CAS  Google Scholar 

  • Horvath CAJ, Boulet GAV, Renoux VM, Delvenne PO, Bogers JPJ. Mechanisms of cell entry by human papillomaviruses: an overview. Virology Journal. 7: pp.11–17, 2010.

    PubMed  Google Scholar 

  • Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J. 276(24): pp.7206–7216, 2009.

    PubMed  CAS  Google Scholar 

  • Druesne-Pecollo N, Tehard B, Mallet Y, Gerber M,Teresa N, Herzberg S, Latino-Martel P. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol., 10: pp. 173–180, 2009.

    PubMed  CAS  Google Scholar 

  • Sakage TA ,Yokoyama A, Haneda T. Genetic polymorphisms of alcohol and aldehyde dehydrogenases, and drinking, smoking and diet in Japanese men with oral and pharyngeal squamous cell carcinoma. Carcinogenesis 28: 865–74, 2007.

    Google Scholar 

  • Marichalar-Mendia X , Rodriguez-Tojo MJ, Acha-Sagredo A , Rey-Barja N, Aguirre-Urizar JM. Oral cancer and polymorphism of ethanol metabolising genes. Oral Oncol. 46(1): pp.9–13, 2010.

    PubMed  CAS  Google Scholar 

  • Higuchi S. Polymorphisms of ethanol metabolizing enzyme genes and alcoholism. Alcohol Suppl. 2 : pp.29–34, 1994.

    CAS  Google Scholar 

  • Vanderveen LA, Hashim MF, Shyr Y, Marnett LJ. Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. PNAS. 100: pp.14247–14252, 2003.

    PubMed  CAS  Google Scholar 

  • Marnett LJ. Chemistry and biology of DNA damage by malondialdehyde. IARC. 150: pp.17–27, 1999.

    CAS  Google Scholar 

  • Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxiciology. 181–182: pp.219–222, 2002.

    Google Scholar 

  • Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev. 73(3): pp.407–450, 2009.

    PubMed  CAS  Google Scholar 

  • Pim D., Banks L. Interaction of viral oncoproteins with cellular target moleuclse: infection with high-risk vs. low-risk human papillomaviruses. APMIS 118:pp.471–493, 2010.

    PubMed  CAS  Google Scholar 

  • Feller L, Wood NH, Khammissa RAG, Lemmer J. Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 1: Human papillomavirus-mediated carcinogenesis. Head and Face Medicine. 6:14, pp.1–5, 2010a.

    Google Scholar 

  • Feller L, Wood NH, Khammissa RAG, Lemmer J. Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamouc cell carcinoma. Part 2: Human papillomavirus-mediated carcinogenesis. Head and Face Medicine. 6:15, pp.1–6, 2010b.

    Google Scholar 

  • Marur S, D’Sousa G, Westra WH, Forastiere AA. HPV-associated head and neck cancer. A virus related cancer epidemic. Lancet. Oncology. 11: pp.781–789, 2010.

    PubMed  Google Scholar 

  • Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecologic Oncology. 118:pp.S12–S17, 2010.

    PubMed  CAS  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD. Heparan sulfate proteoglycans fine-tune mammalian physiology. Nature. Rev. 446: pp.1030–1037, 2007.

    CAS  Google Scholar 

  • Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 77: pp.400–410, 2009.

    PubMed  CAS  Google Scholar 

  • Medema JP, Carazo LP, Hardenberg G, Hahne M. The uncertain glory of APRIL. Cell death and Differentiation. 10: 1121–1125, 2003.

    PubMed  CAS  Google Scholar 

  • Muramatsu T, Saitoh M, Yasufumi R, Uekusa T, Iwamura E, Ohta K, Kohno Y, Abiko Y, Shimono M. Inhibition of syndecan-1 expression and function in oral cancer cells. Oncology reports 20: pp.1353–1357, 2008.

    PubMed  CAS  Google Scholar 

  • Henry-Stanley MJ, Hess DJ, Erlandsen SL, Wells CL Ability of the heparan sulfate proteoglycan syndecan-1 to participate in bacterial translocation across the intestinal epithelial barrier. Shock. 24(6): pp.571–6, 2005

    PubMed  CAS  Google Scholar 

  • Westerlund B, Korhonen TK. Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol. 9(4): pp.687–94, 1993.

    PubMed  CAS  Google Scholar 

  • Narayan O. Lentiviruses are etiological agents of chronic diseases in animals and acquired immunodeficiency syndrome in humans. Can J Vet Res. 54(1): pp.42–8, 1990.

    PubMed  CAS  Google Scholar 

  • Chanda PK, Natuk RJ, Dheer SK, Lubeck MD, Bhat BM, Mason BB, Greenberg L, Mizutani S, Davis AR, Hung PP Helper independent recombinant adenovirus vectors: expression of HIV env or HBV surface antigen. Int Rev Immunol. 7(1): pp.67–77, 1990

    PubMed  CAS  Google Scholar 

  • Mager DL, A.D. Haffajee , P.M. Devlin , C.M. Norris , M.R. Posner and J.M. Goodson. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 3: pp.27–35, 2005.

    PubMed  CAS  Google Scholar 

  • Mager DL, Ximenez-Fyvie LA, Haffajee AD, Scransky SS. Distribution of selected bacterial species on intraoral surfaces. J. Clin Periodontol. 30:pp.644–645, 2003.

    PubMed  Google Scholar 

  • Chen T, Yu WH, Baranova OV, Lakshmanan A and Dewhirst FE. The human oral microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. doi:10.1093/baq013. pp1–10, 2010.

  • Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio. 1(3): pii: e00 pp129–10, 2010.

    Google Scholar 

  • Almståhl A , Wikström M, Fagerberg-Mohlin B.. Microflora in oral ecosystems in subjects with radiation-induced hyposalivation. Oral Dis. 14(6): pp. 541–9, 2008.

    PubMed  Google Scholar 

  • Kazor CE, Mitchell PM, Lee AM, Stokes LN,Loesche WJ, Dewhirst FE, Paster BJ. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol. 41(2): pp.558–63, 2003.

    PubMed  CAS  Google Scholar 

  • Papaioannou W, Gizani S, Haffajee AD, Quirynen M, Mamai-Homata E, Papagiannoulis L. The microbiota on different oral surfaces in healthy children. Oral Microbiology Immunology 24: pp. 183–189, 2009.

    CAS  Google Scholar 

  • Nishiyama Y , Inaba E, Uematsu H, Senpuku H. Effects of mucosal care on oral pathogens in professional oral hygiene to the elderly. Arch Gerontol Geriatr. 51(3): pp. e139–43, 2010.

    PubMed  Google Scholar 

  • Brooks PJ, Theruvathu JA. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol. 35:pp.187–193.42, 2005.

    PubMed  CAS  Google Scholar 

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:5721–5732, 2005.

    PubMed  Google Scholar 

  • Robertson D, Smith AJ. The microbiology of the acute dental abscess. J Med Microbiol. 58(Pt 2) (2009), pp.155–162.

    PubMed  CAS  Google Scholar 

  • Gill Y, Scully C. Orofacial odontogenic infections: review of microbiology and current treatment. Oral Surg Oral Med Oral Pathol. 70(2) (1990), pp.155–158.

    PubMed  CAS  Google Scholar 

  • Brook I. Sinusitis of odontogenic origin. Otolaryngol Head Neck Surg. 135(3) (2006), pp.349–355.

    PubMed  Google Scholar 

  • Liljemark WF, Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med. 7(2): pp.180–98, 1996.

    PubMed  CAS  Google Scholar 

  • Meyer MS , Joshipura K , Giovannucci E , Michaud DS. A review of the relationship between tooth loss, periodontal disease, and cancer. Cancer Causes Control. 19(9): pp.895–907, 2008.

    PubMed  Google Scholar 

  • Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. Oncology Lancet. 9: 550–558, 2009.

    Google Scholar 

  • Susarla SM, Thomas RJ, Abramson ZR, Kaban LB. Biomechanics of the upper airway: Changing concepts in the pathogenesis of obstructive sleep apnea. Int J Oral Maxillofac Surg. 39(12):1149–59. Epub. Oct 27, 2010

    Google Scholar 

  • Yan X, Owens DM. The skin: a home to multiple classes of epithelial progenitor cells. Stem Cell Rev. 4(2):113–8. Epub May 20, 2008.

    Google Scholar 

  • Tezal M, Nasca MS, Stoler DL, Melendy T, Hyland A, Smaldino PJ, Rigual NR, Loree TR. Chronic periodontitis –human papillomavirus synergy in base of tongue cancers. Arch Otolaryngol Head and Neck Surg. 135: pp.391–396, 2009a.

    Google Scholar 

  • Feller L, Khammissa RAG, Wood NH, Lemmer J. Epithelial maturation and molecular biology of oral HPV. Infectious Agents and Cancer. 4:pp.16–25, 2009.

    PubMed  Google Scholar 

  • Rao SK, Pavicevic Z, Du Z, Kim JG, Fan M, Jiao Y, Rosebush M, Samant S, Gu W, Pfeffer LM, Nosrat CA. Pro-inflammatory genes as biomarkers and therapeutic targets in oral squamous cell carcinoma. The J. of Biol Chem., 285: pp.32512–32521, 2010.

    CAS  Google Scholar 

  • Woof JM. The human IgA-Fc alpha receptor interaction and its blockade by streptococcal IgA-binding proteins. Biochem Soc Trans. 30(4): pp.491–4, 2002.

    PubMed  CAS  Google Scholar 

  • Bergey EJ, Stinson MW. Heparin –inhibitable basement membrane binding protein of Streptococcus pyogenes. Infect. Immun. 56: pp. 1715–1721, 1988.

    PubMed  CAS  Google Scholar 

  • Tezal M,Sullivan MA, Reid ME, Marshall JR, Hyland A, Loree T, Lillis C, Hauck L, Wende JWW, Scannapieco FA. Chronic periodontitis and risk for tongue cancer. Arch Otolaryn. Head and Neck Surg. 133: pp.450–454, 2007.

    Google Scholar 

  • Tezal M, Sullivan MA, Hyland A, Marshall JR, Stoler D,. Reid ME, Loree TR, Rigual NR,Merzianu M. Chronic periodontitis and the incidence or head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers. 18(9): pp.2406–2412, 2009b

    Google Scholar 

  • Seitz HK, Matsuzaki S, Yokoyama A, Homann N, Väkeväinen S, Wang XD Alcohol and cancer. Alcohol Clin Exp Res. 25(5 Suppl ISBRA): pp.137 S-143S, 2001.

    Google Scholar 

  • Alam S, Conway MJ, Chen HS, Meyers C. The cigarette smoke Benz[a]pyrene enhances human papillomavirus synthesis. J. of Virology. 82: pp. 1053–1058, 2008.

    CAS  Google Scholar 

  • Wang M, Yu N, Chen L, Villata PW, Hochalter B, Hecht S. Identification of an acetaldehyde adduct in human liver DNA and quantitation as N2-Ethyl deoxyguanosine. Chem Res. Toxiol. 19: pp.319–324, 2006.

    CAS  Google Scholar 

  • Viet CT, Schmidt BL. Understanding oral cancer in the genome era. Head & Neck 10.1002: pp.1246–1268, 2010.

    Google Scholar 

  • Thomas GR, Nadiminti H, Regalado J. Molecular predicators of clinical outcome in patients with head and neck squamous cell carcinoma. Int. J. Exp. Path. 86:347–363, 2005.

    CAS  Google Scholar 

  • Cortesina G, Martone T. Molecular metastases markers in head and neck squamous cell carcinoma: review of the literature. Acta Otorhinolaryngol. Ital. 26: pp.317–325, 2006.

    PubMed  CAS  Google Scholar 

  • Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Seminar in Cancer Biol. 14: pp.473–486, 2004.

    CAS  Google Scholar 

  • Ragin CCR, Modugno, Grolin SM. The epidemiology and risk factors of head and neck cancer: a Focus on Human Papillomavirus. J. of Dent Res. 86: pp.104–114, 2007.

    Google Scholar 

  • Paterson GK, Orihuela CJ Pneumococcal microbial surface components recognizing adhesive matrix molecules targeting of the extracellular matrix. Mol Microbiol. 77(1): pp.1–5. Epub 2010.

    Google Scholar 

  • Oehmcke S, Shannon O, Mörgelin M, Herwald H. Streptococcal M proteins and their role as virulence determinants. Clin Chim Acta. 6:411(17–18):1172–80, 2010.

    Google Scholar 

  • Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J. Periodontol. 74: pp.111–118, 2003.

    PubMed  CAS  Google Scholar 

  • Crum CP. Contemporary theories of cervical carcinogenesis: The virus, the host, and the stem cell. Mod. Pathol. 13(3): pp.243–251, 2000.

    PubMed  CAS  Google Scholar 

  • Bossen C, Schneider P. BAFF, APRIL and their receptors: Structure, function and signaling. Seminars in Immunology. 18:263–275, 2006.

    PubMed  CAS  Google Scholar 

  • Pincelli C, Marconi A. Keratinocyte stem cells: friends or foes. J. of Cell Physiology. 225: pp. 310–315, 2010.

    CAS  Google Scholar 

  • Stati K, Pitot HC, Lambert PF. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. PNAS. 103: pp.14152–14157, 2006.

    Google Scholar 

  • Pista A, Oliveira A, Barateiro A, Cossta H, Verdasca N, Paixao MT. Molecular variants of human papillomavirus type 16 and 18 and risk for cervical neoplasia in Portugal. J. of Medical Virology. 79: pp.1889–1897, 2007.

    CAS  Google Scholar 

  • Laco J. Vosmikova H, Novakova V, Celakovsky P, Dolezalova H, Tucek L, Nekvindova J, Vosmik M, Cermakova E, Ryska A. The role of high-risk human papillobavirus infection in oral and oropharyngeal squamous cell carcinoma in non-smoking and non-drinking patients: a clinicaopathological and molecular study of 46 cases. Virchows Arch. 458: pp.179–187, 2011.

    PubMed  CAS  Google Scholar 

  • Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nature (rev) 7: pp.599–612, 2007.

    Google Scholar 

  • Meurman JH. Infectious and dietary risk factors of oral cancer. Oral Oncol. 46(6): pp. 411–3, 2010.

    PubMed  Google Scholar 

  • Taioli E. Gene–environment interaction in tobacco-related cancers (Review). Carcinogenesis 29: pp.1467–1474, 2008.

    PubMed  CAS  Google Scholar 

  • Irigaray P, Newby JA, Clapp R, Hardell L, Howard V, Montagnier L, Epstein S, Belpomme D. Lifestyle-related factors and environmental agents causing cancer: An overview. Biomedicine & Pharmacotherapy. 61: pp. 640–658, 2007.

    CAS  Google Scholar 

  • Li X, Herz J, Monard D. Activation of ERK signaling upon alternative protease Nexin-1 internalization mediated by syndecan-1. J. of Cellular Biochem. 99: pp.936–951, 2006.

    CAS  Google Scholar 

  • Segrelles C, Moral M, Lara MF, Ruiz S, Santos M, Leis H, García-Escudero R, Martínez-Cruz AB, Martínez-Palacio J, Hernández P, Ballestín C, Paramio JM. Molecular determinants of Akt-induced keratinocyte transformation. Oncogene. 25: 1174–1185, 2006.

    PubMed  CAS  Google Scholar 

  • Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I.. Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J277(19): pp.3890–903, 2010.

    Google Scholar 

  • Levy-Adam F, Ilan N, Vlodavsky I. Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol. (3): pp. 153–60. Epub 2010 Jul 7, 2010.

    Google Scholar 

  • Lindahl U. Regulated diversity of Heparan sulfate. J. Biol. Chem. 273: pp.24979–24982, 1998.

    PubMed  CAS  Google Scholar 

  • Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 45: pp.324–334, 2008.

    PubMed  Google Scholar 

  • Jang DH, Oh JE, Kang HK, Kim OB, Min SK, Jung SY, Hong SD, Lee JI, Min BM. Spontaneous tumorigenicity of primary human oral keratinocytes with human papillomavirus negativity and impaired apoptosis. Int. J. of Oncol. 36: pp.1491–1501, 2010.

    CAS  Google Scholar 

  • JA Linder. Evaluation and management of adult pharyngitis. Compr Ther. Fall-Winter;34(3–4): pp.196–203, 2008.

    Google Scholar 

  • P.C. Baehni and B. Guggenheim. Potential of Diagnostic Microbiology for Treatment and Prognosis of Dental Caries and Periodontal Disease. CROBM 7 pp. 259–277, 1996.

    CAS  Google Scholar 

  • Poschl G, Seitz HK. Alcohol and cancer. Alcohol & Alcoholism. 39: pp.155–165, 2004.

    CAS  Google Scholar 

  • Seitz HK, Becker P. Alcohol metabolism and cancer risk. Alcohol Res. & Health. 30: pp.38–42, 2007.

    Google Scholar 

  • Wang XD. Alcohol, vitamin A, and cancer. Alcohol. 35:pp.251–258, 2005.

    PubMed  CAS  Google Scholar 

  • Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 7: pp.149–156, 2006.

    PubMed  CAS  Google Scholar 

  • Riedel F, Goessler U, Hormann K. Alcohol-related diseases of the mouth and throat. Best Prac. &Res. Clin. Gastroenterology. 17: pp.543–555, 2003.

    CAS  Google Scholar 

  • Toh Y, Oki E, Ohgaki K, Sakamoto Y, Ito S, Egashira, Saeki H, Kakeji Y, Morita M, Sakaguchi Y, Okamura T, Maehara Y. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int. J. Clin. Oncol. 15: pp.135–44, 2010.

    Google Scholar 

  • Comporti M , Signorini C , Leoncini S , Gardi C, Ciccoli L , Giardini A , Vecchio D , Arezzini B. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr. 5(2): pp.101–9, 2010.

    PubMed  CAS  Google Scholar 

  • Lees GJ , Jago GR. Formation of acetaldehyde from threonine by lactic acid bacteria. J Dairy Res. 43(1): pp.75–83, 1976.

    PubMed  CAS  Google Scholar 

  • Iwami Y, Takahashi-Abbe S , Takahashi N , Abbe K, Yamada T. Rate-limiting steps of glucose and sorbitol metabolism in Streptococcus mutans cells exposed to air. Oral Microbiol Immunol. 15(5): pp.325–328, 2000.

    PubMed  CAS  Google Scholar 

  • Lachenmeier DW, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism. Addiction. 104(4): pp.533–550, 2009.

    PubMed  Google Scholar 

  • Moscicki AB. Impact of HPV infection in adolescent populations. J Adolesc Health. 37(6 Suppl): pp.S3–9, 2005.

    PubMed  Google Scholar 

  • Patel S, Chiplunkar S. Host immune responses to cervical cancer. Curr Opin Obstet Gynecol. 21(1): pp.54–9, 2009.

    PubMed  Google Scholar 

  • Ascencio F, Fransson LA, Wadstrom T. Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparan sulphate. J. Med. Microbiol. 38: pp.240–244, 1993.

    PubMed  CAS  Google Scholar 

  • Wallin KL, Wiklund F, Luostarinen T. A population based prospective study of Chlamydia trachomatis infection and cervical carcinoma. Int J. cancer 101: 371–374, 2002.

    PubMed  CAS  Google Scholar 

  • J. Rehm , and F. Kanteres , D.W. Lachenmeier. Unrecorded consumption, quality of alcohol and health consequences. Drug Alcohol Rev. 29(4): pp.426–36, 2010.

    PubMed  Google Scholar 

  • J.R. Bertino , and B.L. Hillcoat. Regulation of dihydrofolate reductase and other folate-requiring enzymes. Adv Enzyme Regul. 6(1968), pp.335–49.

    PubMed  CAS  Google Scholar 

  • Vadeboncoeur C, Pelletier M. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev.19(3): pp.187–207, 1997.

    PubMed  CAS  Google Scholar 

  • J.S, Moreb. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 3(4): pp.237–46, 2008.

    PubMed  CAS  Google Scholar 

  • J.R. Marshall, S. Graham, B.P. Haughey, D. Shedd, R. O’Shea, J. Brasure, G.S. Wilkinson, and D. West. Smoking, alcohol, dentition and diet in the epidemiology of oral cancer. Eur J Cancer B Oral Oncol. 28B(1): pp.9–15, 1992.

    PubMed  CAS  Google Scholar 

  • Nieminen MT, Uittamo J, Salaspuro M, Rautemaa R Acetaldehyde production from ethanol and glucose by non-Candida albicans yeasts in vitro. Oral Oncol.;45(12): pp.e245–8, 2009.

    PubMed  CAS  Google Scholar 

  • Hoffman MH, Haidaris CG. Identification and characterization of a Candida albicans binding proteoglycan secreted from rat submandibular salivary glands. Infect Immun. 62(3): pp.828–836, 1994.

    PubMed  CAS  Google Scholar 

  • Crabbe JC, Belknap JK, Buck KJ, Metten P Use of recombinant inbred strains for studying genetic determinants of responses to alcohol. Alcohol Alcohol Suppl. 2: pp.67–71, 1994.

    Google Scholar 

  • Kang MK, Park MH. Conversion of normal to malignant phenotype: telomere shortening, telomerase activation, and genomic instability during immortalization of human oral keratinocytes. Crit. Rev. in Oral Biol. &Med. 12: pp.38–54, 2001.

    CAS  Google Scholar 

  • Kang MK, Guo W, Park NH. Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Cell Growth &Diff. 9: pp. 85–95, 1998.

    CAS  Google Scholar 

  • Brown LM, Check DP, Devesa SS. Oropharyngeal cancer incidence trends: diminishing racial disparities. Cancer Causes Control. March, 5th, 2011.

    Google Scholar 

  • Lu Xiao-Ying, Zhang T, Fang HP. Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 89: pp. 1357–1371, 2011.

    Google Scholar 

  • Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbon (PAHs): A review. J. of hazardous materials. 169: pp. 1–5, 2009.

    CAS  Google Scholar 

  • Krawczyk E, Suprynowicz FA, Liu X, Dai Y, Hartman DP, Hanover J, Schlegel R. Koliocytosis: A cooperative interaction between the human papillomavirus E5 and E6 oncoproteins. Amer. J. of pathol. 173: pp. 682–688, 2008.

    CAS  Google Scholar 

  • Marchiando AM, Graham WV, Turner JR. Epithelial barrier in homeostasis and disease. Annu. Rev. pathol. Mech. Dis. 5: pp. 119–144, 2010.

    CAS  Google Scholar 

  • Benchtrit LC, Gray ED, Wannamaker LW. Hyaluronidase activity of bacteriophage of group A Streptococci. Infection and Immunity. 15: pp. 527–532, 1977.

    Google Scholar 

  • Y. Abiko. Passive immunization against dental caries and periodontal disease: development of recombinant and human monoclonal antibodies. Crit Rev Oral Biol Med. 11(2):pp. 140–58, 2000.

    PubMed  CAS  Google Scholar 

  • Min B, Woo K, Baek J, Lee G, Park N. Malignant transformation of hpv-immortalized human oral keratinocytes by chemical carcinogens. Int J Oncol. 7(2):pp.249–56, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwartz, J. (2012). Poly-Microbial Interaction with Human Papilloma Virus Leading to Increased Risk for Head and Neck Squamous Cell Carcinoma and Oral Squamous Cell Carcinomas. In: Radosevich, J. (eds) HPV and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5437-9_4

Download citation

Publish with us

Policies and ethics