Skip to main content

The Life Cycle of Human Papillomavirus

  • Chapter
  • First Online:
HPV and Cancer

Abstract

This chapter provides an overview of the life cycle of the human papillomavirus (HPV), including: (1) infection, (2) genome maintenance and cell proliferation, (3) genome amplification, (4) virus assembly and release, and (5) integration and tumor progression. While many of the processes involved with the HPV life cycle are still not well known, this chapter summarizes the research to date that has formed our current understanding of the cellular mechanisms driving each of these steps. Furthermore, this chapter describes known differences in the life cycle of high-risk and low-risk HPV infections, and the resulting tumor progression associated with each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HPV:

Human Papillomavirus

TA:

Transit Amplifying cells

GAG:

Glycoaminoglycan

HSPs:

Heparan Sulfate Proteoglycans

HS:

Heparon Sulfate

VLPs:

Virus Like Particles

CyPB:

Cyclophilin B

ECM:

Extracellular Matrix

LN 5:

Laminin 5

ER:

Endoplasmic Reticulum

ND 10:

Nuclear Domain 10

PML:

Promyelocytic Leukemia protein

PODs:

PML Oncogenic Domains

DYNLT 1:

Dynein Light Chain

Brd 4:

Bromodomain-containing protein

Chl R1:

Chromosome Loss-related protein

NLSs:

Nuclear Localization Signals

nNLS:

N-terminus NLS

cNLS:

C-terminus NLS

LCR:

Long Control Region

DSBs:

Double Strands Breaks

CFSs:

Common Fragile Sites

C/EBP:

CLAAT/Enhancer Binding Protein

YY1:

Yin-Yang 1

CDP/Cut:

CCAAT displacement protein

AP1:

Activator Protein 1

L-SIL:

Low grade Squamous Intraepithelial Lesion

H-SIL:

High Grade Squamous Intraepithelial Lesion

References

  • Clayton, E.; Doupe, D. P.; Klein, A. M.; Winton, D. J.; Simons, B. D.; Jones, P. H. A single type of progenitor cell maintains normal epidermis. Nature, 2007, 446(7132), 185–9.

    PubMed  CAS  Google Scholar 

  • Bodily, J.; Laimins, L. A. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol, 2010, 19(1), 33–9.

    Google Scholar 

  • Roberts, J. N.; Buck, C. B.; Thompson, C. D.; Kines, R.; Bernardo, M.; Choyke, P. L.; Lowy, D. R.; Schiller, J. T. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med, 2007, 13(7), 857–61.

    PubMed  CAS  Google Scholar 

  • Mercer, J.; Schelhaas, M.; Helenius, A. Virus entry by endocytosis. Annu Rev Biochem, 2010, 79, 803–33.

    Google Scholar 

  • Joyce, J. G.; Tung, J. S.; Przysiecki, C. T.; Cook, J. C.; Lehman, E. D.; Sands, J. A.; Jansen, K. U.; Keller, P. M. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem, 1999, 274(9), 5810–22.

    PubMed  CAS  Google Scholar 

  • Giroglou, T.; Florin, L.; Schafer, F.; Streeck, R. E.; Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol, 2001, 75(3), 1565–70.

    PubMed  CAS  Google Scholar 

  • Bernfield, M.; Kokenyesi, R.; Kato, M.; Hinkes, M. T.; Spring, J.; Gallo, R. L.; Lose, E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol, 1992, 8, 365–93.

    PubMed  CAS  Google Scholar 

  • Fransson, L. A. Glypicans. Int J Biochem Cell Biol, 2003, 35(2), 125–9.

    PubMed  CAS  Google Scholar 

  • Esko, J. D.; Lindahl, U. Molecular diversity of heparan sulfate. J Clin Invest, 2001, 108(2), 169–73.

    PubMed  CAS  Google Scholar 

  • Shafti-Keramat, S.; Handisurya, A.; Kriehuber, E.; Meneguzzi, G.; Slupetzky, K.; Kirnbauer, R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol, 2003, 77(24), 13125–35.

    PubMed  CAS  Google Scholar 

  • Johnson, K. M.; Kines, R. C.; Roberts, J. N.; Lowy, D. R.; Schiller, J. T.; Day, P. M. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol, 2009, 83(5), 2067–74.

    PubMed  CAS  Google Scholar 

  • Knappe, M.; Bodevin, S.; Selinka, H. C.; Spillmann, D.; Streeck, R. E.; Chen, X. S.; Lindahl, U.; Sapp, M. Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem, 2007, 282(38), 27913–22.

    PubMed  CAS  Google Scholar 

  • Selinka, H. C.; Florin, L.; Patel, H. D.; Freitag, K.; Schmidtke, M.; Makarov, V. A.; Sapp, M. Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol, 2007, 81(20), 10970–80.

    PubMed  CAS  Google Scholar 

  • Day, P. M.; Gambhira, R.; Roden, R. B.; Lowy, D. R.; Schiller, J. T. Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol, 2008, 82(9), 4638–46.

    PubMed  CAS  Google Scholar 

  • Bienkowska-Haba, M.; Patel, H. D.; Sapp, M. Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog, 2009, 5(7), e1000524.

    PubMed  Google Scholar 

  • Sapp, M.; Bienkowska-Haba, M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J, 2009, 276(24), 7206–16.

    PubMed  CAS  Google Scholar 

  • Campos, S. K.; Ozbun, M. A. Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One, 2009, 4(2), e4463.

    PubMed  Google Scholar 

  • Culp, T. D.; Budgeon, L. R.; Marinkovich, M. P.; Meneguzzi, G.; Christensen, N. D. Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol, 2006, 80(18), 8940–50.

    PubMed  CAS  Google Scholar 

  • Culp, T. D.; Budgeon, L. R.; Christensen, N. D. Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology, 2006, 347(1), 147–59.

    PubMed  CAS  Google Scholar 

  • Day, P. M.; Lowy, D. R.; Schiller, J. T. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology, 2003, 307(1), 1–11.

    PubMed  CAS  Google Scholar 

  • Smith, J. L.; Campos, S. K.; Ozbun, M. A. Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol, 2007, 81(18), 9922–31.

    PubMed  CAS  Google Scholar 

  • Spoden, G.; Freitag, K.; Husmann, M.; Boller, K.; Sapp, M.; Lambert, C.; Florin, L. Clathrin- and caveolin-independent entry of human papillomavirus type 16--involvement of tetraspanin-enriched microdomains (TEMs). PLoS One, 2008, 3(10), e3313.

    PubMed  Google Scholar 

  • Laniosz, V.; Dabydeen, S. A.; Havens, M. A.; Meneses, P. I. Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a sensitive. J Virol, 2009, 83(16), 8221–32.

    PubMed  CAS  Google Scholar 

  • Selinka, H. C.; Giroglou, T.; Sapp, M. Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology, 2002, 299(2), 279–287.

    PubMed  CAS  Google Scholar 

  • Doms, R. W.; Helenius, A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol, 1986, 60(3), 833–9.

    PubMed  CAS  Google Scholar 

  • Stegmann, T.; Morselt, H. W.; Scholma, J.; Wilschut, J. Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching. Biochim Biophys Acta, 1987, 904(1), 165–70.

    PubMed  CAS  Google Scholar 

  • Smith, J. L.; Campos, S. K.; Wandinger-Ness, A.; Ozbun, M. A. Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol, 2008, 82(19), 9505–12.

    PubMed  CAS  Google Scholar 

  • Pelkmans, L.; Helenius, A. Endocytosis via caveolae. Traffic, 2002, 3(5), 311–20.

    PubMed  CAS  Google Scholar 

  • Day, P. M.; Baker, C. C.; Lowy, D. R.; Schiller, J. T. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U S A, 2004, 101(39), 14252–7.

    PubMed  CAS  Google Scholar 

  • Gornemann, J.; Hofmann, T. G.; Will, H.; Muller, M. Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology, 2002, 303(1), 69–78.

    PubMed  CAS  Google Scholar 

  • Maul, G. G.; Negorev, D.; Bell, P.; Ishov, A. M. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol, 2000, 129(2–3), 278–87.

    PubMed  CAS  Google Scholar 

  • Kamper, N.; Day, P. M.; Nowak, T.; Selinka, H. C.; Florin, L.; Bolscher, J.; Hilbig, L.; Schiller, J. T.; Sapp, M. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol, 2006, 80(2), 759–68.

    PubMed  Google Scholar 

  • Richards, R. M.; Lowy, D. R.; Schiller, J. T.; Day, P. M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A, 2006, 103(5), 1522–7.

    PubMed  CAS  Google Scholar 

  • Florin, L.; Becker, K. A.; Lambert, C.; Nowak, T.; Sapp, C.; Strand, D.; Streeck, R. E.; Sapp, M. Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J Virol, 2006, 80(13), 6691–6.

    PubMed  CAS  Google Scholar 

  • Ishii, Y.; Tanaka, K.; Kondo, K.; Takeuchi, T.; Mori, S.; Kanda, T. Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody. Virology, 2010, 406(2), 181–8.

    Google Scholar 

  • Schneider, M. A.; Spoden, G. A.; Florin, L.; Lambert, C. Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol, 2011, 13(1), 32–46.

    Google Scholar 

  • Pyeon, D.; Pearce, S. M.; Lank, S. M.; Ahlquist, P.; Lambert, P. F. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog, 2009, 5(2), e118.

    Google Scholar 

  • Stanley, M. A.; Browne, H. M.; Appleby, M.; Minson, A. C. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer, 1989, 43(4), 672–6.

    PubMed  CAS  Google Scholar 

  • Bedell, M. A.; Hudson, J. B.; Golub, T. R.; Turyk, M. E.; Hosken, M.; Wilbanks, G. D.; Laimins, L. A. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol, 1991, 65(5), 2254–60.

    PubMed  CAS  Google Scholar 

  • Wilson, V. G.; West, M.; Woytek, K.; Rangasamy, D. Papillomavirus E1 proteins: form, function, and features. Virus Genes, 2002, 24(3), 275–90.

    PubMed  CAS  Google Scholar 

  • You, J.; Croyle, J. L.; Nishimura, A.; Ozato, K.; Howley, P. M. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell, 2004, 117(3), 349–60.

    PubMed  CAS  Google Scholar 

  • Berg, M.; Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J Virol, 1997, 71(5), 3853–63.

    PubMed  CAS  Google Scholar 

  • Mohr, I. J.; Clark, R.; Sun, S.; Androphy, E. J.; MacPherson, P.; Botchan, M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science, 1990, 250(4988), 1694–9.

    PubMed  CAS  Google Scholar 

  • You, J. Papillomavirus interaction with cellular chromatin. Biochim Biophys Acta, 2010, 1799(3–4), 192–9.

    Google Scholar 

  • Bastien, N.; McBride, A. A. Interaction of the papillomavirus E2 protein with mitotic chromosomes. Virology, 2000, 270(1), 124–34.

    PubMed  CAS  Google Scholar 

  • Lehman, C. W.; Botchan, M. R. Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc Natl Acad Sci U S A, 1998, 95(8), 4338–43.

    PubMed  CAS  Google Scholar 

  • Abroi, A.; Ilves, I.; Kivi, S.; Ustav, M. Analysis of chromatin attachment and partitioning functions of bovine papillomavirus type 1 E2 protein. J Virol, 2004, 78(4), 2100–13.

    PubMed  CAS  Google Scholar 

  • Poddar, A.; Reed, S. C.; McPhillips, M. G.; Spindler, J. E.; McBride, A. A. The human papillomavirus type 8 E2 tethering protein targets the ribosomal DNA loci of host mitotic chromosomes. J Virol, 2009, 83(2), 640–50.

    PubMed  CAS  Google Scholar 

  • Van Tine, B. A.; Dao, L. D.; Wu, S. Y.; Sonbuchner, T. M.; Lin, B. Y.; Zou, N.; Chiang, C. M.; Broker, T. R.; Chow, L. T. Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci U S A, 2004, 101(12), 4030–5.

    PubMed  Google Scholar 

  • Baxter, M. K.; McPhillips, M. G.; Ozato, K.; McBride, A. A. The mitotic chromosome binding activity of the papillomavirus E2 protein correlates with interaction with the cellular chromosomal protein, Brd4. J Virol, 2005, 79(8), 4806–18.

    PubMed  CAS  Google Scholar 

  • Parish, J. L.; Bean, A. M.; Park, R. B.; Androphy, E. J. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell, 2006, 24(6), 867–76.

    PubMed  CAS  Google Scholar 

  • Frattini, M. G.; Lim, H. B.; Laimins, L. A. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc Natl Acad Sci U S A, 1996, 93(7), 3062–7.

    PubMed  CAS  Google Scholar 

  • Stubenrauch, F.; Hummel, M.; Iftner, T.; Laimins, L. A. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol, 2000, 74(3), 1178–86.

    PubMed  CAS  Google Scholar 

  • Lace, M. J.; Anson, J. R.; Thomas, G. S.; Turek, L. P.; Haugen, T. H. The E8--E2 gene product of human papillomavirus type 16 represses early transcription and replication but is dispensable for viral plasmid persistence in keratinocytes. J Virol, 2008, 82(21), 10841–53.

    PubMed  CAS  Google Scholar 

  • Ammermann, I.; Bruckner, M.; Matthes, F.; Iftner, T.; Stubenrauch, F. Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. J Virol, 2008, 82(11), 5127–36.

    PubMed  CAS  Google Scholar 

  • Thomas, J. T.; Hubert, W. G.; Ruesch, M. N.; Laimins, L. A. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci U S A, 1999, 96(15), 8449–54.

    PubMed  CAS  Google Scholar 

  • De Geest, K.; Turyk, M. E.; Hosken, M. I.; Hudson, J. B.; Laimins, L. A.; Wilbanks, G. D. Growth and differentiation of human papillomavirus type 31b positive human cervical cell lines. Gynecol Oncol, 1993, 49(3), 303–10.

    PubMed  Google Scholar 

  • Doorbar, J. The papillomavirus life cycle. J Clin Virol, 2005, 32 Suppl 1, S7–15.

    PubMed  CAS  Google Scholar 

  • Stoler, M. H.; Broker, T. R. In situ hybridization detection of human papillomavirus DNAs and messenger RNAs in genital condylomas and a cervical carcinoma. Hum Pathol, 1986, 17(12), 1250–8.

    PubMed  CAS  Google Scholar 

  • Ozbun, M. A.; Meyers, C. Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. Virology, 1998, 248(2), 218–30.

    PubMed  CAS  Google Scholar 

  • Cheng, S.; Schmidt-Grimminger, D. C.; Murant, T.; Broker, T. R.; Chow, L. T. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 1995, 9(19), 2335–49.

    PubMed  CAS  Google Scholar 

  • Flores, E. R.; Allen-Hoffmann, B. L.; Lee, D.; Lambert, P. F. The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol, 2000, 74(14), 6622–31.

    PubMed  CAS  Google Scholar 

  • Banerjee, N. S.; Genovese, N. J.; Noya, F.; Chien, W. M.; Broker, T. R.; Chow, L. T. Conditionally activated E7 proteins of high-risk and low-risk human papillomaviruses induce S phase in postmitotic, differentiated human keratinocytes. J Virol, 2006, 80(13), 6517–24.

    PubMed  CAS  Google Scholar 

  • Zhang, B.; Chen, W.; Roman, A. The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc Natl Acad Sci U S A, 2006, 103(2), 437–42.

    PubMed  CAS  Google Scholar 

  • Genovese, N. J.; Banerjee, N. S.; Broker, T. R.; Chow, L. T. Casein kinase II motif-dependent phosphorylation of human papillomavirus E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol, 2008, 82(10), 4862–73.

    PubMed  CAS  Google Scholar 

  • Wang, H. K.; Duffy, A. A.; Broker, T. R.; Chow, L. T. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev, 2009, 23(2), 181–94.

    PubMed  CAS  Google Scholar 

  • Peh, W. L.; Middleton, K.; Christensen, N.; Nicholls, P.; Egawa, K.; Sotlar, K.; Brandsma, J.; Percival, A.; Lewis, J.; Liu, W. J.; Doorbar, J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol, 2002, 76(20), 10401–16.

    PubMed  CAS  Google Scholar 

  • Middleton, K.; Peh, W.; Southern, S.; Griffin, H.; Sotlar, K.; Nakahara, T.; El-Sherif, A.; Morris, L.; Seth, R.; Hibma, M.; Jenkins, D.; Lambert, P.; Coleman, N.; Doorbar, J. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol, 2003, 77(19), 10186–201.

    PubMed  CAS  Google Scholar 

  • Ruesch, M. N.; Laimins, L. A. Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology, 1998, 250(1), 19–29.

    PubMed  CAS  Google Scholar 

  • Hummel, M.; Hudson, J. B.; Laimins, L. A. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol, 1992, 66(10), 6070–80.

    PubMed  CAS  Google Scholar 

  • Ozbun, M. A.; Meyers, C. Temporal usage of multiple promoters during the life cycle of human papillomavirus type 31b. J Virol, 1998, 72(4), 2715–22.

    PubMed  CAS  Google Scholar 

  • Ozbun, M. A.; Meyers, C. Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol, 1997, 71(7), 5161–72.

    PubMed  CAS  Google Scholar 

  • Fehrmann, F.; Klumpp, D. J.; Laimins, L. A. Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol, 2003, 77(5), 2819–31.

    PubMed  CAS  Google Scholar 

  • Peh, W. L.; Brandsma, J. L.; Christensen, N. D.; Cladel, N. M.; Wu, X.; Doorbar, J. The viral E4 protein is required for the completion of the cottontail rabbit papillomavirus productive cycle in vivo. J Virol, 2004, 78(4), 2142–51.

    PubMed  CAS  Google Scholar 

  • Wilson, R.; Fehrmann, F.; Laimins, L. A. Role of the E1--E4 protein in the differentiation-dependent life cycle of human papillomavirus type 31. J Virol, 2005, 79(11), 6732–40.

    PubMed  CAS  Google Scholar 

  • Moody, C. A.; Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog, 2009, 5(10), e1000605.

    PubMed  Google Scholar 

  • Banerjee, N. S.; Wang, H. K.; Broker, T. R.; Chow, L. T. Human papillomavirus (HPV) E7 induces prolonged G2 following S-Phase reentry in differentiated human keratinocytes. J Biol Chem, 2011, 286(17), 15473–82.

    Google Scholar 

  • Flores, E. R.; Lambert, P. F. Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol, 1997, 71(10), 7167–79.

    PubMed  CAS  Google Scholar 

  • Chow, L. T.; Duffy, A. A.; Wang, H. K.; Broker, T. R. A highly efficient system to produce infectious human papillomavirus: Elucidation of natural virus-host interactions. Cell Cycle, 2009, 8(9), 1319–23.

    PubMed  CAS  Google Scholar 

  • Davy, C.; Doorbar, J. G2/M cell cycle arrest in the life cycle of viruses. Virology, 2007, 368(2), 219–26.

    PubMed  CAS  Google Scholar 

  • Moody, C. A.; Fradet-Turcotte, A.; Archambault, J.; Laimins, L. A. Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci U S A, 2007, 104(49), 19541–6.

    PubMed  CAS  Google Scholar 

  • McKenna, D. J.; McDade, S. S.; Patel, D.; McCance, D. J. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J Virol, 2010, 84(20), 10644–52.

    Google Scholar 

  • Melar-New, M.; Laimins, L. A. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol, 2010, 84(10), 5212–21.

    Google Scholar 

  • Sonkoly, E.; Stahle, M.; Pivarcsi, A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol, 2008, 33(3), 312–5.

    PubMed  CAS  Google Scholar 

  • Yi, R.; Poy, M. N.; Stoffel, M.; Fuchs, E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 2008, 452(7184), 225–9.

    PubMed  CAS  Google Scholar 

  • Rinne, T.; Brunner, H. G.; van Bokhoven, H. p63-associated disorders. Cell Cycle, 2007, 6(3), 262–8.

    PubMed  CAS  Google Scholar 

  • Truong, A. B.; Khavari, P. A. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle, 2007, 6(3), 295–9.

    PubMed  CAS  Google Scholar 

  • Lena, A. M.; Shalom-Feuerstein, R.; Rivetti di Val Cervo, P.; Aberdam, D.; Knight, R. A.; Melino, G.; Candi, E. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ, 2008, 15(7), 1187–95.

    PubMed  CAS  Google Scholar 

  • Genther, S. M.; Sterling, S.; Duensing, S.; Munger, K.; Sattler, C.; Lambert, P. F. Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol, 2003, 77(5), 2832–42.

    PubMed  CAS  Google Scholar 

  • Belanger, K. G.; Mirzayan, C.; Kreuzer, H. E.; Alberts, B. M.; Kreuzer, K. N. Two-dimensional gel analysis of rolling circle replication in the presence and absence of bacteriophage T4 primase. Nucleic Acids Res, 1996, 24(11), 2166–75.

    PubMed  CAS  Google Scholar 

  • Stauffer, Y.; Raj, K.; Masternak, K.; Beard, P. Infectious human papillomavirus type 18 pseudovirions. J Mol Biol, 1998, 283(3), 529–36.

    PubMed  CAS  Google Scholar 

  • Bird, G.; O’Donnell, M.; Moroianu, J.; Garcea, R. L. Possible role for cellular karyopherins in regulating polyomavirus and papillomavirus capsid assembly. J Virol, 2008, 82(20), 9848–57.

    PubMed  CAS  Google Scholar 

  • Merle, E.; Rose, R. C.; LeRoux, L.; Moroianu, J. Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin alpha2beta1 heterodimers. J Cell Biochem, 1999, 74(4), 628–37.

    PubMed  CAS  Google Scholar 

  • Nelson, L. M.; Rose, R. C.; LeRoux, L.; Lane, C.; Bruya, K.; Moroianu, J. Nuclear import and DNA binding of human papillomavirus type 45 L1 capsid protein. J Cell Biochem, 2000, 79(2), 225–38.

    PubMed  Google Scholar 

  • Nelson, L. M.; Rose, R. C.; Moroianu, J. Nuclear import strategies of high risk HPV16 L1 major capsid protein. J Biol Chem, 2002, 277(26), 23958–64.

    PubMed  CAS  Google Scholar 

  • Darshan, M. S.; Lucchi, J.; Harding, E.; Moroianu, J. The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol, 2004, 78(22), 12179–88.

    PubMed  CAS  Google Scholar 

  • Klucevsek, K.; Daley, J.; Darshan, M. S.; Bordeaux, J.; Moroianu, J. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. Virology, 2006, 352(1), 200–8.

    PubMed  CAS  Google Scholar 

  • Day, P. M.; Roden, R. B.; Lowy, D. R.; Schiller, J. T. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol, 1998, 72(1), 142–50.

    PubMed  CAS  Google Scholar 

  • Swindle, C. S.; Zou, N.; Van Tine, B. A.; Shaw, G. M.; Engler, J. A.; Chow, L. T. Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol, 1999, 73(2), 1001–9.

    PubMed  CAS  Google Scholar 

  • Bischof, O.; Nacerddine, K.; Dejean, A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol, 2005, 25(3), 1013–24.

    PubMed  CAS  Google Scholar 

  • Florin, L.; Sapp, C.; Streeck, R. E.; Sapp, M. Assembly and translocation of papillomavirus capsid proteins. J Virol, 2002, 76(19), 10009–14.

    PubMed  CAS  Google Scholar 

  • Guccione, E.; Lethbridge, K. J.; Killick, N.; Leppard, K. N.; Banks, L. HPV E6 proteins interact with specific PML isoforms and allow distinctions to be made between different POD structures. Oncogene, 2004, 23(27), 4662–72.

    PubMed  CAS  Google Scholar 

  • Heino, P.; Zhou, J.; Lambert, P. F. Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. Virology, 2000, 276(2), 304–14.

    PubMed  CAS  Google Scholar 

  • Roberts, S.; Hillman, M. L.; Knight, G. L.; Gallimore, P. H. The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol, 2003, 77(1), 673–84.

    PubMed  CAS  Google Scholar 

  • Becker, K. A.; Florin, L.; Sapp, C.; Maul, G. G.; Sapp, M. Nuclear localization but not PML protein is required for incorporation of the papillomavirus minor capsid protein L2 into virus-like particles. J Virol, 2004, 78(3), 1121–8.

    PubMed  CAS  Google Scholar 

  • Becker, K. A.; Florin, L.; Sapp, C.; Sapp, M. Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology, 2003, 314(1), 161–7.

    PubMed  CAS  Google Scholar 

  • Florin, L.; Becker, K. A.; Sapp, C.; Lambert, C.; Sirma, H.; Muller, M.; Streeck, R. E.; Sapp, M. Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol, 2004, 78(11), 5546–53.

    PubMed  CAS  Google Scholar 

  • Bordeaux, J.; Forte, S.; Harding, E.; Darshan, M. S.; Klucevsek, K.; Moroianu, J. The l2 minor capsid protein of low-risk human papillomavirus type 11 interacts with host nuclear import receptors and viral DNA. J Virol, 2006, 80(16), 8259–62.

    PubMed  CAS  Google Scholar 

  • Zhou, J.; Stenzel, D. J.; Sun, X. Y.; Frazer, I. H. Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J Gen Virol, 1993, 74 (Pt 4), 763–8.

    PubMed  CAS  Google Scholar 

  • Roden, R. B.; Day, P. M.; Bronzo, B. K.; Yutzy, W. H. t.; Yang, Y.; Lowy, D. R.; Schiller, J. T. Positively charged termini of the L2 minor capsid protein are necessary for papillomavirus infection. J Virol, 2001, 75(21), 10493–7.

    PubMed  CAS  Google Scholar 

  • Casini, G. L.; Graham, D.; Heine, D.; Garcea, R. L.; Wu, D. T. In vitro papillomavirus capsid assembly analyzed by light scattering. Virology, 2004, 325(2), 320–7.

    PubMed  CAS  Google Scholar 

  • Finnen, R. L.; Erickson, K. D.; Chen, X. S.; Garcea, R. L. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol, 2003, 77(8), 4818–26.

    PubMed  CAS  Google Scholar 

  • Modis, Y.; Trus, B. L.; Harrison, S. C. Atomic model of the papillomavirus capsid. EMBO J, 2002, 21(18), 4754–62.

    PubMed  CAS  Google Scholar 

  • Conway, M. J.; Meyers, C. Replication and assembly of human papillomaviruses. J Dent Res, 2009, 88(4), 307–17.

    PubMed  CAS  Google Scholar 

  • Doorbar, J.; Ely, S.; Sterling, J.; McLean, C.; Crawford, L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature, 1991, 352(6338), 824–7.

    PubMed  CAS  Google Scholar 

  • Wang, Q.; Griffin, H.; Southern, S.; Jackson, D.; Martin, A.; McIntosh, P.; Davy, C.; Masterson, P. J.; Walker, P. A.; Laskey, P.; Omary, M. B.; Doorbar, J. Functional analysis of the human papillomavirus type 16 E1 = E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol, 2004, 78(2), 821–33.

    PubMed  CAS  Google Scholar 

  • Bryan, J. T.; Brown, D. R. Association of the human papillomavirus type 11 E1()E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology, 2000, 277(2), 262–9.

    PubMed  CAS  Google Scholar 

  • Brown, D. R.; Kitchin, D.; Qadadri, B.; Neptune, N.; Batteiger, T.; Ermel, A. The human papillomavirus type 11 E1--E4 protein is a transglutaminase 3 substrate and induces abnormalities of the cornified cell envelope. Virology, 2006, 345(1), 290–8.

    PubMed  CAS  Google Scholar 

  • Lehr, E.; Hohl, D.; Huber, M.; Brown, D. Infection with Human Papillomavirus alters expression of the small proline rich proteins 2 and 3. J Med Virol, 2004, 72(3), 478–83.

    PubMed  CAS  Google Scholar 

  • Munger, K.; Baldwin, A.; Edwards, K. M.; Hayakawa, H.; Nguyen, C. L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol, 2004, 78(21), 11451–60.

    PubMed  Google Scholar 

  • Duensing, S.; Munger, K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res, 2002, 62(23), 7075–82.

    PubMed  CAS  Google Scholar 

  • Jones, D. L.; Alani, R. M.; Munger, K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev, 1997, 11(16), 2101–11.

    PubMed  CAS  Google Scholar 

  • Sherman, L.; Schlegel, R. Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol, 1996, 70(5), 3269–79.

    PubMed  CAS  Google Scholar 

  • Hudson, J. B.; Bedell, M. A.; McCance, D. J.; Laiminis, L. A. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol, 1990, 64(2), 519–26.

    PubMed  CAS  Google Scholar 

  • Griep, A. E.; Herber, R.; Jeon, S.; Lohse, J. K.; Dubielzig, R. R.; Lambert, P. F. Tumorigenicity by human papillomavirus type 16 E6 and E7 in transgenic mice correlates with alterations in epithelial cell growth and differentiation. J Virol, 1993, 67(3), 1373–84.

    PubMed  CAS  Google Scholar 

  • Schwarz, E.; Freese, U. K.; Gissmann, L.; Mayer, W.; Roggenbuck, B.; Stremlau, A.; zur Hausen, H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, 1985, 314(6006), 111–4.

    PubMed  CAS  Google Scholar 

  • Boshart, M.; Gissmann, L.; Ikenberg, H.; Kleinheinz, A.; Scheurlen, W.; zur Hausen, H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J, 1984, 3(5), 1151–7.

    PubMed  CAS  Google Scholar 

  • Yee, C.; Krishnan-Hewlett, I.; Baker, C. C.; Schlegel, R.; Howley, P. M. Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. Am J Pathol, 1985, 119(3), 361–6.

    PubMed  CAS  Google Scholar 

  • Cullen, A. P.; Reid, R.; Campion, M.; Lorincz, A. T. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol, 1991, 65(2), 606–12.

    PubMed  CAS  Google Scholar 

  • Durst, M.; Kleinheinz, A.; Hotz, M.; Gissmann, L. The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. J Gen Virol, 1985, 66 (Pt 7), 1515–22.

    PubMed  Google Scholar 

  • Peitsaro, P.; Johansson, B.; Syrjanen, S. Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol, 2002, 40(3), 886–91.

    PubMed  CAS  Google Scholar 

  • Chow, L. T.; Broker, T. R.; Steinberg, B. M. The natural history of human papillomavirus infections of the mucosal epithelia. APMIS, 2010, 118(6–7), 422–49.

    Google Scholar 

  • Jeon, S.; Lambert, P. F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A, 1995, 92(5), 1654–8.

    PubMed  CAS  Google Scholar 

  • Pett, M.; Coleman, N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol, 2007, 212(4), 356–67.

    PubMed  CAS  Google Scholar 

  • Jeon, S.; Allen-Hoffmann, B. L.; Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol, 1995, 69(5), 2989–97.

    PubMed  CAS  Google Scholar 

  • Luft, F.; Klaes, R.; Nees, M.; Durst, M.; Heilmann, V.; Melsheimer, P.; von Knebel Doeberitz, M. Detection of integrated papillomavirus sequences by ligation-mediated PCR (DIPS-PCR) and molecular characterization in cervical cancer cells. Int J Cancer, 2001, 92(1), 9–17.

    PubMed  CAS  Google Scholar 

  • Choo, K. B.; Pan, C. C.; Han, S. H. Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology, 1987, 161(1), 259–61.

    PubMed  CAS  Google Scholar 

  • Rosl, F.; Achtstatter, T.; Bauknecht, T.; Hutter, K. J.; Futterman, G.; zur Hausen, H. Extinction of the HPV18 upstream regulatory region in cervical carcinoma cells after fusion with non-tumorigenic human keratinocytes under non-selective conditions. EMBO J, 1991, 10(6), 1337–45.

    PubMed  CAS  Google Scholar 

  • Stoler, M. H.; Rhodes, C. R.; Whitbeck, A.; Wolinsky, S. M.; Chow, L. T.; Broker, T. R. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol, 1992, 23(2), 117–28.

    PubMed  CAS  Google Scholar 

  • Bernard, B. A.; Bailly, C.; Lenoir, M. C.; Darmon, M.; Thierry, F.; Yaniv, M. The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol, 1989, 63(10), 4317–24.

    PubMed  CAS  Google Scholar 

  • Romanczuk, H.; Thierry, F.; Howley, P. M. Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol, 1990, 64(6), 2849–59.

    PubMed  CAS  Google Scholar 

  • Dowhanick, J. J.; McBride, A. A.; Howley, P. M. Suppression of cellular proliferation by the papillomavirus E2 protein. J Virol, 1995, 69(12), 7791–9.

    PubMed  CAS  Google Scholar 

  • Francis, D. A.; Schmid, S. I.; Howley, P. M. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol, 2000, 74(6), 2679–86.

    PubMed  CAS  Google Scholar 

  • Cone, R. W.; Minson, A. C.; Smith, M. R.; McDougall, J. K. Conservation of HPV-16 E6/E7 ORF sequences in a cervical carcinoma. J Med Virol, 1992, 37(2), 99–107.

    PubMed  CAS  Google Scholar 

  • Wagatsuma, M.; Hashimoto, K.; Matsukura, T. Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences. J Virol, 1990, 64(2), 813–21.

    PubMed  CAS  Google Scholar 

  • Lee, D.; Kim, H. Z.; Jeong, K. W.; Shim, Y. S.; Horikawa, I.; Barrett, J. C.; Choe, J. Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J Biol Chem, 2002, 277(31), 27748–56.

    PubMed  CAS  Google Scholar 

  • Veldman, T.; Horikawa, I.; Barrett, J. C.; Schlegel, R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol, 2001, 75(9), 4467–72.

    PubMed  CAS  Google Scholar 

  • Klingelhutz, A. J.; Foster, S. A.; McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 1996, 380(6569), 79–82.

    PubMed  CAS  Google Scholar 

  • Kiyono, T.; Foster, S. A.; Koop, J. I.; McDougall, J. K.; Galloway, D. A.; Klingelhutz, A. J. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature, 1998, 396(6706), 84–8.

    PubMed  CAS  Google Scholar 

  • Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell, 2000, 100(1), 57–70.

    PubMed  CAS  Google Scholar 

  • Richards, R. I. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet, 2001, 17(6), 339–45.

    PubMed  CAS  Google Scholar 

  • Matzner, I.; Savelyeva, L.; Schwab, M. Preferential integration of a transfected marker gene into spontaneously expressed fragile sites of a breast cancer cell line. Cancer Lett, 2003, 189(2), 207–19.

    PubMed  CAS  Google Scholar 

  • Thorland, E. C.; Myers, S. L.; Gostout, B. S.; Smith, D. I. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene, 2003, 22(8), 1225–37.

    PubMed  CAS  Google Scholar 

  • Thorland, E. C.; Myers, S. L.; Persing, D. H.; Sarkar, G.; McGovern, R. M.; Gostout, B. S.; Smith, D. I. Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res, 2000, 60(21), 5916–21.

    PubMed  CAS  Google Scholar 

  • Wentzensen, N.; Vinokurova, S.; von Knebel Doeberitz, M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res, 2004, 64(11), 3878–84.

    PubMed  CAS  Google Scholar 

  • Durst, M.; Glitz, D.; Schneider, A.; zur Hausen, H. Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology, 1992, 189(1), 132–40.

    PubMed  CAS  Google Scholar 

  • Zhao, W.; Chow, L. T.; Broker, T. R. Transcription activities of human papillomavirus type 11 E6 promoter-proximal elements in raft and submerged cultures of foreskin keratinocytes. J Virol, 1997, 71(11), 8832–40.

    PubMed  CAS  Google Scholar 

  • Parker, J. N.; Zhao, W.; Askins, K. J.; Broker, T. R.; Chow, L. T. Mutational analyses of differentiation-dependent human papillomavirus type 18 enhancer elements in epithelial raft cultures of neonatal foreskin keratinocytes. Cell Growth Differ, 1997, 8(7), 751–62.

    PubMed  CAS  Google Scholar 

  • Zhao, W.; Chow, L. T.; Broker, T. R. A distal element in the HPV-11 upstream regulatory region contributes to promoter repression in basal keratinocytes in squamous epithelium. Virology, 1999, 253(2), 219–29.

    PubMed  CAS  Google Scholar 

  • Sibbet, G. J.; Campo, M. S. Multiple interactions between cellular factors and the non-coding region of human papillomavirus type 16. J Gen Virol, 1990, 71 (Pt 11), 2699–707.

    PubMed  CAS  Google Scholar 

  • O’Connor, M. J.; Tan, S. H.; Tan, C. H.; Bernard, H. U. YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol, 1996, 70(10), 6529–39.

    PubMed  Google Scholar 

  • Bauknecht, T.; Angel, P.; Royer, H. D.; zur Hausen, H. Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor YY1. EMBO J, 1992, 11(12), 4607–17.

    PubMed  CAS  Google Scholar 

  • O’Connor, M. J.; Stunkel, W.; Koh, C. H.; Zimmermann, H.; Bernard, H. U. The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses through a conserved silencing element. J Virol, 2000, 74(1), 401–10.

    PubMed  Google Scholar 

  • Zhao, W.; Noya, F.; Chen, W. Y.; Townes, T. M.; Chow, L. T.; Broker, T. R. Trichostatin A up-regulates human papillomavirus type 11 upstream regulatory region-E6 promoter activity in undifferentiated primary human keratinocytes. J Virol, 1999, 73(6), 5026–33.

    PubMed  CAS  Google Scholar 

  • Ai, W.; Toussaint, E.; Roman, A. CCAAT displacement protein binds to and negatively regulates human papillomavirus type 6 E6, E7, and E1 promoters. J Virol, 1999, 73(5), 4220–9.

    PubMed  CAS  Google Scholar 

  • Li, S.; Moy, L.; Pittman, N.; Shue, G.; Aufiero, B.; Neufeld, E. J.; LeLeiko, N. S.; Walsh, M. J. Transcriptional repression of the cystic fibrosis transmembrane conductance regulator gene, mediated by CCAAT displacement protein/cut homolog, is associated with histone deacetylation. J Biol Chem, 1999, 274(12), 7803–15.

    PubMed  CAS  Google Scholar 

  • Lace, M. J.; Isacson, C.; Anson, J. R.; Lorincz, A. T.; Wilczynski, S. P.; Haugen, T. H.; Turek, L. P. Upstream regulatory region alterations found in human papillomavirus type 16 (HPV-16) isolates from cervical carcinomas increase transcription, ori function, and HPV immortalization capacity in culture. J Virol, 2009, 83(15), 7457–66.

    PubMed  CAS  Google Scholar 

  • Bosch, F. X.; Schwarz, E.; Boukamp, P.; Fusenig, N. E.; Bartsch, D.; zur Hausen, H. Suppression in vivo of human papillomavirus type 18 E6-E7 gene expression in nontumorigenic HeLa X fibroblast hybrid cells. J Virol, 1990, 64(10), 4743–54.

    PubMed  CAS  Google Scholar 

  • Durst, M.; Bosch, F. X.; Glitz, D.; Schneider, A.; zur Hausen, H. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines. J Virol, 1991, 65(2), 796–804.

    PubMed  CAS  Google Scholar 

  • zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst, 2000, 92(9), 690–8.

    PubMed  CAS  Google Scholar 

  • zur Hausen, H. Intracellular surveillance of persisting viral infections. Human genital cancer results from deficient cellular control of papillomavirus gene expression. Lancet, 1986, 2(8505), 489–91.

    PubMed  CAS  Google Scholar 

  • Rosl, F.; Lengert, M.; Albrecht, J.; Kleine, K.; Zawatzky, R.; Schraven, B.; zur Hausen, H. Differential regulation of the JE gene encoding the monocyte chemoattractant protein (MCP-1) in cervical carcinoma cells and derived hybrids. J Virol, 1994, 68(4), 2142–50.

    PubMed  CAS  Google Scholar 

  • Kyo, S.; Inoue, M.; Hayasaka, N.; Inoue, T.; Yutsudo, M.; Tanizawa, O.; Hakura, A. Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology, 1994, 200(1), 130–9.

    PubMed  CAS  Google Scholar 

  • Braun, L.; Durst, M.; Mikumo, R.; Gruppuso, P. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor beta 1. Cancer Res, 1990, 50(22), 7324–32.

    PubMed  CAS  Google Scholar 

  • Woodworth, C. D.; Notario, V.; DiPaolo, J. A. Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J Virol, 1990, 64(10), 4767–75.

    PubMed  CAS  Google Scholar 

  • Malejczyk, J.; Malejczyk, M.; Majewski, S.; Breitburd, F.; Luger, T. A.; Jablonska, S.; Orth, G. Increased tumorigenicity of human keratinocytes harboring human papillomavirus type 16 is associated with resistance to endogenous tumor necrosis factor-alpha-mediated growth limitation. Int J Cancer, 1994, 56(4), 593–8.

    PubMed  CAS  Google Scholar 

  • Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta, 1991, 1072(2–3), 129–57.

    PubMed  CAS  Google Scholar 

  • Soto, U.; Das, B. C.; Lengert, M.; Finzer, P.; zur Hausen, H.; Rosl, F. Conversion of HPV 18 positive non-tumorigenic HeLa-fibroblast hybrids to invasive growth involves loss of TNF-alpha mediated repression of viral transcription and modification of the AP-1 transcription complex. Oncogene, 1999, 18(21), 3187–98.

    PubMed  CAS  Google Scholar 

  • Bechtold, V.; Beard, P.; Raj, K. Human papillomavirus type 16 E2 protein has no effect on transcription from episomal viral DNA. J Virol, 2003, 77(3), 2021–8.

    PubMed  CAS  Google Scholar 

  • Pett, M. R.; Herdman, M. T.; Palmer, R. D.; Yeo, G. S.; Shivji, M. K.; Stanley, M. A.; Coleman, N. Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. Proc Natl Acad Sci U S A, 2006, 103(10), 3822–7.

    PubMed  CAS  Google Scholar 

  • Herdman, M. T.; Pett, M. R.; Roberts, I.; Alazawi, W. O.; Teschendorff, A. E.; Zhang, X. Y.; Stanley, M. A.; Coleman, N. Interferon-beta treatment of cervical keratinocytes naturally infected with human papillomavirus 16 episomes promotes rapid reduction in episome numbers and emergence of latent integrants. Carcinogenesis, 2006, 27(11), 2341–53.

    PubMed  CAS  Google Scholar 

  • Spartz, H.; Lehr, E.; Zhang, B.; Roman, A.; Brown, D. R. Progression from productive infection to integration and oncogenic transformation in human papillomavirus type 59-immortalized foreskin keratinocytes. Virology, 2005, 336(1), 11–25.

    PubMed  CAS  Google Scholar 

  • Tonon, S. A.; Picconi, M. A.; Bos, P. D.; Zinovich, J. B.; Galuppo, J.; Alonio, L. V.; Teyssie, A. R. Physical status of the E2 human papilloma virus 16 viral gene in cervical preneoplastic and neoplastic lesions. J Clin Virol, 2001, 21(2), 129–34.

    PubMed  CAS  Google Scholar 

  • Kalantari, M.; Blennow, E.; Hagmar, B.; Johansson, B. Physical state of HPV16 and chromosomal mapping of the integrated form in cervical carcinomas. Diagn Mol Pathol, 2001, 10(1), 46–54.

    PubMed  CAS  Google Scholar 

  • Klaes, R.; Woerner, S. M.; Ridder, R.; Wentzensen, N.; Duerst, M.; Schneider, A.; Lotz, B.; Melsheimer, P.; von Knebel Doeberitz, M. Detection of high-risk cervical intraepithelial neoplasia and cervical cancer by amplification of transcripts derived from integrated papillomavirus oncogenes. Cancer Res, 1999, 59(24), 6132–6.

    PubMed  CAS  Google Scholar 

  • Hopman, A. H.; Smedts, F.; Dignef, W.; Ummelen, M.; Sonke, G.; Mravunac, M.; Vooijs, G. P.; Speel, E. J.; Ramaekers, F. C. Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol, 2004, 202(1), 23–33.

    PubMed  Google Scholar 

  • Higgins, G. D.; Uzelin, D. M.; Phillips, G. E.; McEvoy, P.; Marin, R.; Burrell, C. J. Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. J Gen Virol, 1992, 73 (Pt 8), 2047–57.

    PubMed  CAS  Google Scholar 

  • Pett, M. R.; Alazawi, W. O.; Roberts, I.; Dowen, S.; Smith, D. I.; Stanley, M. A.; Coleman, N. Acquisition of high-level chromosomal instability is associated with integration of human papillomavirus type 16 in cervical keratinocytes. Cancer Res, 2004, 64(4), 1359–68.

    PubMed  CAS  Google Scholar 

  • Goodwin, E. C.; Naeger, L. K.; Breiding, D. E.; Androphy, E. J.; DiMaio, D. Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol, 1998, 72(5), 3925–34.

    PubMed  CAS  Google Scholar 

  • DeFilippis, R. A.; Goodwin, E. C.; Wu, L.; DiMaio, D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol, 2003, 77(2), 1551–63.

    PubMed  CAS  Google Scholar 

  • Teissier, S.; Ben Khalifa, Y.; Mori, M.; Pautier, P.; Desaintes, C.; Thierry, F. A new E6/P63 pathway, together with a strong E7/E2F mitotic pathway, modulates the transcriptome in cervical cancer cells. J Virol, 2007, 81(17), 9368–76.

    PubMed  CAS  Google Scholar 

  • Melsheimer, P.; Vinokurova, S.; Wentzensen, N.; Bastert, G.; von Knebel Doeberitz, M. DNA aneuploidy and integration of human papillomavirus type 16 e6/e7 oncogenes in intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix uteri. Clin Cancer Res, 2004, 10(9), 3059–63.

    PubMed  CAS  Google Scholar 

  • Gray, E.; Pett, M. R.; Ward, D.; Winder, D. M.; Stanley, M. A.; Roberts, I.; Scarpini, C. G.; Coleman, N. In vitro progression of human papillomavirus 16 episome-associated cervical neoplasia displays fundamental similarities to integrant-associated carcinogenesis. Cancer Res, 2010, 70(10), 4081–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Radosevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xue, J., Vesper, B.J., Radosevich, J.A. (2012). The Life Cycle of Human Papillomavirus. In: Radosevich, J. (eds) HPV and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5437-9_3

Download citation

Publish with us

Policies and ethics