Skip to main content

Limit Analysis and Conic Programming for Gurson-Type Spheroid Problems

  • Conference paper
Book cover Limit State of Materials and Structures
  • 1086 Accesses

Abstract

In his famous 1977-paper, Gurson used the kinematic approach of Limit Analysis (LA) about the hollow sphere model with a von Mises solid matrix. The computation led to a macroscopic yield function of the “Porous von Mises”-type materials. Several extensions have been further proposed in the literature, such as those accounting for void shape effects by Gologanu et al. (J. Eng. Mater. Technol. 116:290–297, 1994; Continuum Micromechanics, Springer, Berlin, 1997), among others. To obtain pertinent lower and upper bounds to the exact solutions in terms of LA, we have revisited our existing kinematic and static 3D-FEM codes for spherical cavities to take into account the model with confocal spheroid cavity and boundary. In both cases, the optimized formulations have allowed to obtain an excellent efficiency of the resulting codes. A first comparison with the Gurson criterion does not only show an improvement of the previous results but points out that the real solution to the hollow sphere model problem depends on the third invariant of the stress tensor. A second series of tests is presented for oblate cavities, in order to analyze the above-mentioned works in terms of bound and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benzerga, A.A., Besson, J.: Plastic potentials for anisotropic porous solids. Eur. J. Mech. A, Solids 20, 397–434 (2001)

    Article  MATH  Google Scholar 

  2. Danas, K., Idiart, M.I., Castañeda, P.P.: A homogenization-based constitutive model for isotropic viscoplastic porous media. Int. J. Solids Struct. 45, 3392–3409 (2008)

    Article  MATH  Google Scholar 

  3. Francescato, P., Pastor, J., Riveill-Reydet, B.: Ductile failure of cylindrically porous materials. Part i: plane stress problem and experimental results. Eur. J. Mech. A, Solids 23, 181–190 (2004)

    Article  MATH  Google Scholar 

  4. Garajeu, M., Suquet, P.: Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. J. Mech. Phys. Solids 45, 873–902 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gologanu, M.: Etude quelques problèmes de rupture ductile des métaux. Thèse de doctorat, Université Paris-6 (1997)

    Google Scholar 

  6. Gologanu, M., Leblond, J., Perrin, G., Devaux, J.: Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 116, 290–297 (1994)

    Article  Google Scholar 

  7. Gologanu, M., Leblond, J., Perrin, G., Devaux, J.: Recent extensions of gurson’s model for porous ductile metals. In: Suquet, P. (ed.) Continuum Micromechanics. Springer, Berlin (1997)

    Google Scholar 

  8. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth—part I: yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  9. Kammoun, Z., Pastor, F., Smaoui, H., Pastor, J.: Large static problem in numerical limit analysis: a decomposition approach. Int. J. Numer. Anal. Methods Geomech. 34, 1960–1980 (2010)

    Article  Google Scholar 

  10. Leblond, J.B., Perrin, G., Suquet, P.: Exact results and approximate models for porous viscoplastic solids. Int. J. Plast. 10, 213–235 (1994)

    Article  MATH  Google Scholar 

  11. Lee, B., Mear, M.: Axisymmetric deformation of power-law solids containing a dilute concentration of aligned spheroidal voids. J. Mech. Phys. Solids 40, 1805–1836 (1992)

    Article  Google Scholar 

  12. MOSEK ApS: C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark (2002)

    Google Scholar 

  13. Monchiet, V., Cazacu, O., Charkaluk, E., Kondo, D.: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int. J. Plast. 24, 1158–1189 (2008)

    Article  MATH  Google Scholar 

  14. Monchiet, V., Charkaluk, E., Kondo, D.: An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields. C. R., Méc. 335, 32–41 (2007)

    Article  MATH  Google Scholar 

  15. Pastor, F., Kondo, D., Pastor, J.: Numerical limit analysis bounds for ductile porous media with oblate voids. Mech. Res. Commun. 38, 250–254 (2011)

    Article  Google Scholar 

  16. Pastor, F., Loute, E., Pastor, J.: Limit analysis and convex programming: a decomposition approach of the kinematical mixed method. Int. J. Numer. Methods Eng. 78, 254–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pastor, J.: Analyse limite: détermination numérique de solutions statiques complètes. Application au talus vertical. J. Méc. Appl. 2, 167–196 (1978)

    Google Scholar 

  18. Pastor, J., Castaneda, P.P.: Yield criteria for porous media in plane strain: second-order estimates versus numerical results. C. R., Méc. 330, 741–747 (2002)

    Article  MATH  Google Scholar 

  19. Pastor, J., Francescato, P., Trillat, M., Loute, E., Rousselier, G.: Ductile failure of cylindrically porous materials. part II: other cases of symmetry. Eur. J. Mech. A, Solids 23, 191–201 (2004)

    Article  MATH  Google Scholar 

  20. Thai-The, H., Francescato, P., Pastor, J.: Limit analysis of unidirectional porous media. Mech. Res. Commun. 25, 535–542 (1998)

    Article  MATH  Google Scholar 

  21. Thoré, P., Pastor, F., Kondo, D., Pastor, J.: Hollow sphere models, conic programming and third stress invariant. Eur. J. Mech., A Solids (2010, in press)

    Google Scholar 

  22. Thoré, P., Pastor, F., Pastor, J., Kondo, D.: Closed form solutions for the hollow sphere model with Coulomb and Drucker-Prager materials under isotropic loadings. C. R. Méc., Acad. Sc. Paris 337, 260–267 (2009)

    MATH  Google Scholar 

  23. Trillat, M., Pastor, J.: Limit analysis and Gurson’s model. Eur. J. Mech. A, Solids 24, 800–819 (2005)

    Article  MATH  Google Scholar 

  24. Tvergaard, V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. Mech. 17, 389–407 (1981)

    Article  Google Scholar 

  25. Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pastor, F., Thoré, P., Kondo, D., Pastor, J. (2013). Limit Analysis and Conic Programming for Gurson-Type Spheroid Problems. In: de Saxcé, G., Oueslati, A., Charkaluk, E., Tritsch, JB. (eds) Limit State of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5425-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5425-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5424-9

  • Online ISBN: 978-94-007-5425-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics