Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

This chapter focuses on the structural conversion of natural and recombinant prion proteins in vitro. They key event in prion diseases is the conversion of the cellular prion protein (PrPC) into its disease causing isoform PrPSc. This conversion is represented by a conformational change from an β-helical dominated isoform into the mostly β-sheeted PrPSc. Represented is an overview of in vitro conversion systems that result in β-structured recombinant prion proteins including the current achievements in the generation of synthetic mammalian prions as proof of the protein-only hypothesis. In addition to the conversion of recombinant PrP the chapter features a summary of the protein misfolding cyclic amplification (PMCA) technique which has gained enormous popularity in prion research. Given is a general overview about the technique itself and the broad spectrum of utilization as detection method for prions. The spontaneous generation of prions by the protein misfolding amplification (PMCA) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790

    Article  PubMed  CAS  Google Scholar 

  • Atarashi R, Wilham JM, Christensen L, Hughson AG, Moore RA, Johnson LM, Onwubiko HA, Priola SA, Caughey B (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5:211–212

    Article  PubMed  CAS  Google Scholar 

  • Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T, Yamanaka H, Shirabe S, Yamada M, Mizusawa H, Kitamoto T, Klug G, McGlade A, Collins SJ, Nishida N (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–178

    Article  PubMed  CAS  Google Scholar 

  • Baron GS, Hughson AG, Raymond GJ, Offerdahl DK, Barton KA, Raymond LD, Dorward DW, Caughey B (2011) Effect of glycans and the glycophosphatidylinositol anchor on strain dependent conformations of scrapie prion protein: improved purifications and infrared spectra. Biochemistry 50:4479–4490

    Article  PubMed  CAS  Google Scholar 

  • Baskakov IV (2004) Autocatalytic conversion of recombinant prion proteins displays a species barrier. J Biol Chem 279:7671–7677

    Article  PubMed  CAS  Google Scholar 

  • Baskakov IV, Legname G, Prusiner SB, Cohen FE (2001) Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem 276:19687–19690

    Article  PubMed  CAS  Google Scholar 

  • Bocharova OV, Breydo L, Salnikov VV, Gill AC, Baskakov IV (2005) Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob disease. Protein Sci 14:1222–1232

    Article  PubMed  CAS  Google Scholar 

  • Bocharova OV, Makarava N, Breydo L, Anderson M, Salnikov VV, Baskakov IV (2006) Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core. J Biol Chem 281:2373–2379

    Article  PubMed  CAS  Google Scholar 

  • Bolton DC, McKinley MP, Prusiner SB (1982) Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311

    Article  PubMed  CAS  Google Scholar 

  • Bossers A, de Vries R, Smits MA (2000) Susceptibility of sheep for scrapie as assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol 74:1407–1414

    Article  PubMed  CAS  Google Scholar 

  • Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Saá P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Gonzalez-Romero D, Saá P, Morales R, De Castro J, Soto C (2008) Crossing the species barrier by PrPSc replication in vitro generates unique infectious prions. Cell 134:757–768

    Article  PubMed  CAS  Google Scholar 

  • Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1435–1439

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  PubMed  CAS  Google Scholar 

  • Cobb NJ, Apetri AC, Surewicz WK (2008) Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J Biol Chem 283:34704–34711

    Article  PubMed  CAS  Google Scholar 

  • Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Ann Rev Biochem 67:793–819

    Article  PubMed  CAS  Google Scholar 

  • Colby DW, Prusiner SB (2011) De novo generation of prion strains. Nat Rev Microbiol 9(11):771–777. doi:10.1038/nrmicro2650

    Google Scholar 

  • Colby DW, Zhang Q, Wang S, Groth D, Legname G, Riesner D, Prusiner SB (2007) Prion detection by an amyloid seeding assay. Proc Natl Acad Sci U S A 104:20914–20919

    Article  PubMed  CAS  Google Scholar 

  • Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ, Prusiner SB (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci U S A 106:20417–20422

    Article  PubMed  CAS  Google Scholar 

  • Colby DW, Wain R, Baskakov IV, Legname G, Palmer CG, Nguyen HO, Lemus A, Cohen FE, DeArmond SJ, Prusiner SB (2010) Protease-sensitive synthetic prions. PLoS Pathog 6:e1000736

    Article  PubMed  Google Scholar 

  • Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A 104:9741–9746

    Article  PubMed  CAS  Google Scholar 

  • Elfrink K, Ollesch J, Stöhr J, Willbold D, Riesner D, Gerwert K (2008) Structural changes of membrane-anchored native PrP(C). Proc Natl Acad Sci U S A 105(31):10815–10819

    Google Scholar 

  • Frost B, Ollesch J, Wille H, Diamond MI (2009) Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J Biol Chem 284:3546–3551

    Article  PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Watts JC, Nguyen HO, Hayashi S, DeArmond SJ, Prusiner SB (2011) Conformational transformation and selection of synthetic prion strains. J Mol Biol 413:527–542

    Article  PubMed  CAS  Google Scholar 

  • Gidalevitz D, Huang Z, Rice SA (1999) Protein folding at the air-water interface studied with x-ray reflectivity. Proc Natl Acad Sci U S A 96:2608–2611

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Montalban N, Makarava N, Ostapchenko VG, Savtchenk R, Alexeeva I, Rohwer RG, Baskakov IV (2011) Highly efficient protein misfolding cyclic amplification. PLoS Pathog 7:e1001277. doi:10.1371/journal.ppat.1001277

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Romero D, Barria MA, Leon P, Morales R, Soto C (2008) Detection of infectious prions in urine. FEBS Lett 582:3161–3166

    Article  PubMed  CAS  Google Scholar 

  • Haley NJ, Mathiason CK, Zabel MD, Telling GC, Hoover EA (2009) Detection of sub-clinical CWD infection in conventional test-negative deer long after oral exposure to urine and feces from CWD + Deer. PLoS ONE 4:e7990. doi:10.1371/journal.pone.0007990

    Article  PubMed  Google Scholar 

  • Hornemann S, Korth C, Oesch B, Riek R, Wider G, Wüthrich K, Glockshuber R (1997) Recombinant full-length murine prion protein, mPrP(23–231): purification and spectroscopic characterization. FEBS Lett 413:277–281

    Article  PubMed  CAS  Google Scholar 

  • Hornemann S, Schorn C, Wüthrich K (2004) NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep 5:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937

    Article  PubMed  CAS  Google Scholar 

  • Jansen K, Schäfer O, Birkmann E, Post K, Serban H, Prusiner SB, Riesner D (2001) Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form. Biol Chem 382:683–691

    PubMed  CAS  Google Scholar 

  • Jones M, Peden AH, Prowse CV, Groner A, Manson JC, Turner ML, Ironside JW, MacGregor IR, Head MW (2007) In vitro amplification and detection of variant Creutzfeldt-Jakob disease PrPSc. J Pathol 213:21–26

    Article  PubMed  CAS  Google Scholar 

  • Jones M, Peden AH, Yull H, Wight D, Bishop MT, Prowse CV, Turner ML, Ironside JW, MacGregor IR, Head MW (2009) Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrPSc) associated with variant Creutzfeldt-Jakob disease. Transfusion 49:376–384

    Article  PubMed  CAS  Google Scholar 

  • Kazlauskaite J, Sanghera N (2003) Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42:3295–3304

    Article  PubMed  CAS  Google Scholar 

  • Kim JI, Cali I, Surewicz K, Kong Q, Raymond GJ, Atarashi R, Race B, Qing L, Gambetti P, Caughey B, Surewicz WK (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285:14083–14087

    Article  PubMed  CAS  Google Scholar 

  • Klein TR, Kirsch D, Kaufmann R, Riesner D (1998) Prion rods contain small amounts of two sphingolipids as revealed by thin-layer chromatography and mass spectrometry. J Biol Chem 376:655–666

    Google Scholar 

  • Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471–474

    Article  PubMed  CAS  Google Scholar 

  • Kurt TD, Telling GC, Zabel MD, Hoover EA (2009) Trans-species amplification of PrPCWD and correlation with rigid loop 170N. Virology 387:235–243

    Article  PubMed  CAS  Google Scholar 

  • Leffers KW, Wille H, Stöhr J, Junger E, Prusiner SB, Riesner D (2005) Assembly of natural and recombinant prion protein into fibrils. Biol Chem 386:569–580

    Article  PubMed  CAS  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  PubMed  CAS  Google Scholar 

  • Legname G, Nguyen HO, Baskakov IV, Cohen FE, Dearmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci U S A 102:2168–2173

    Article  PubMed  CAS  Google Scholar 

  • LeVine H (1993) Thioflavine T interaction with synthetic Alzheimer’s disease b-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  PubMed  CAS  Google Scholar 

  • Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119:177–187

    Article  PubMed  CAS  Google Scholar 

  • Mays CE, Yeom J, Kang HE, Bian J, Khaychuk V, Kim Y, Bartz JC, Telling GC, Ryou C (2011) In vitro amplification of misfolded prion protein using lysate of cultured cells. PLoS ONE 6:e18047. doi:10.1371/journal.pone.0018047

    Article  PubMed  CAS  Google Scholar 

  • McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35:57–62

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn I, Groth D, Stöckel J, Moffat B, Reilly D, Yansura D, Willett WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB (1996) High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35:5528–5537

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784

    Article  PubMed  CAS  Google Scholar 

  • Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchère J, Lakhdar L, Legastelois S, Baron T (2011) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2011.06.022

    Google Scholar 

  • Pan K-M, Baldwin M et al (1993) Conversion of a-helices into b-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966

    Article  PubMed  CAS  Google Scholar 

  • Panza G, Luers L, Stöhr J, Nagel-Steger L, Weiss J, Riesner D, Willbold D, Birkmann E (2010) Molecular Interactions between prions as seeds and recombinant prion proteins as substrates resemble the biological interspecies barrier in vitro. PLoS ONE 5:e14283. doi:10.1371/journal.pone.0014283

    Google Scholar 

  • Paravastu AK, Qahwash I, Leapman RD, Meredith SC, Tycko R (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci U S A 106:7443–7448

    Article  PubMed  CAS  Google Scholar 

  • Piening N, Weber P, Giese A, Kretzschmar H (2005) Breakage of PrP aggregates is essential for efficient autocatalytic propagation of misfolded prion protein. Biochem Biophys Res Commun 326:339–343

    Article  PubMed  CAS  Google Scholar 

  • Pritzkow S, Wagenführ K, Daus ML, Boerner S, Lemmer K, Thomzig A, Mielke M, Beekes M (2011) Quantitative detection and biological propagation of scrapie seeding activity in vitro facilitate use of prions as model pathogens for disinfection. PLoS ONE 6:e20384.doi:10.1371/journal.pone.0020384

    Google Scholar 

  • Prusiner SB (2007) Prions. In: Knipe DM, Howley PM, Griffin DE (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, pp 3059–3092

    Google Scholar 

  • Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE (1984) Purification and structural studies of a major scrapie prion protein. Cell 38:127–134

    Article  PubMed  CAS  Google Scholar 

  • Raymond GJ, Hope J, Kocisko DA, Priola SA, Raymond LD, Bossers A, Ironside J, Will RG, Chen SG, Petersen RB, Gambetti P, Rubenstein R, Smits MA, Lansbury PT Jr, Caughey B (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388:285–288

    Article  PubMed  CAS  Google Scholar 

  • Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wüthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382:180–182

    Article  PubMed  CAS  Google Scholar 

  • Rudd PM, Merry AH, Wormald MR, Dwek RA (2002) Glycosylation and prion protein. Curr Opin Struct Biol 12:578–586

    Article  PubMed  CAS  Google Scholar 

  • Saa P, Castilla J, Soto C (2006a) Presymptomatic detection of prions in blood. Science 313:92–94

    Article  CAS  Google Scholar 

  • Saa P, Castilla J, Soto C (2006b) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281:35245–35252

    Article  CAS  Google Scholar 

  • Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813

    Article  PubMed  CAS  Google Scholar 

  • Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrPSc molecules with different conformations. Nat Med 4:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Scott M, Ridley RM (1999) Transgenetic investigations of the species barrier and prion strains. In: Prusiner SB (ed) Prion biology and diseases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 307–347

    Google Scholar 

  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240

    Article  PubMed  CAS  Google Scholar 

  • Stanker LH, Serban AV, Cleveland E, Hnasko R, Lemus A, Safar J, DeArmond SJ, Prusiner SB (2010) Conformation-dependent high-affinity monoclonal antibodies to prion proteins. J Immunol 185:729–737

    Article  PubMed  CAS  Google Scholar 

  • Stöhr J, Weinmann N, Wille H, Kaimann T, Nagel-Steger L, Birkmann E, Panza G, Prusiner SB, Eigen M, Riesner D (2008) Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci U S A 105:2409–2414

    Article  PubMed  Google Scholar 

  • Supattapone S, Muramoto T, Legname G, Mehlhorn I, Cohen FE, DeArmond SJ, Prusiner SB, Scott MR (2001) Identification of two prion protein regions that modify scrapie incubation time. J Virol 75:1408–1413

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Yang F, Hu Y, Wang X, Wang X, Jin C, Ma J (2007) Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions. Biochemistry 46:7045–7053

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135

    Google Scholar 

  • Watts JC, Westaway D (2007) The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 1772:654–672

    Article  PubMed  CAS  Google Scholar 

  • Watts JC, Giles K, Grillo SK, Lemus A, DeArmond SJ, Prusiner SB (2011) Bioluminescence imaging of Abeta deposition in bigenic mouse models of Alzheimer’s disease. Proc Natl Acad Sci U S A 108:2528–2533

    Article  PubMed  CAS  Google Scholar 

  • Weber P, Giese A, Piening N, Mitteregger G, Thomzig A, Beekes M, Kretzschmar HA (2006) Cell-free formation of misfolded prion protein with authentic prion infectivity. Proc Natl Acad Sci U S A 103(43):15818–15823

    Google Scholar 

  • Wilham JM, Orrú CD, Bessen RA, Atarashi R, Sano K, Race B, Meade-White KD, Taubner LM, Timmes A, Caughey B (2010) Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog 6:e1001217

    Article  PubMed  Google Scholar 

  • Wille H, Bian W, McDonald M, Kendall A, Colby DW, Bloch L, Ollesch J, Borovinskiy AL, Cohen FE, Prusiner SB, Stubbs G (2009) Natural and synthetic prion structure from X-ray fiber diffraction. Proc Natl Acad Sci U S A 106:16990–16995

    Article  PubMed  CAS  Google Scholar 

  • Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) a-Synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:509–512

    Google Scholar 

  • Wopfner F, Weidenhöfer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schätzl HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289:1163–1178

    Article  PubMed  CAS  Google Scholar 

  • Xiong LW, Raymond LD, Hayes SF, Raymond GJ, Caughey B (2001) Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem 79:669–678

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stöhr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stöhr, J. (2012). Prion Protein Aggregation and FibrillogenesisIn Vitro . In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_5

Download citation

Publish with us

Policies and ethics