Skip to main content

Experimental Inhibition of Peptide Fibrillogenesis by Synthetic Peptides, Carbohydrates and Drugs

  • Chapter
  • First Online:
Book cover Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

  • 5402 Accesses

Abstract

Peptide fibrillogenesis generally begins by the transformation of normally soluble proteins into elongated aggregates which are called as amyloid. These fibrils mainly consist of ß-sheets. They share certain common characteristics such as a cross-ß x-ray diffraction pattern, association with other common proteins and typical staining by the dye Congo Red. The individual form of the deposit consists of a disease-specific peptide/protein. The disease-specific protein serves as the basis for the classification of the amyloids. The association of fibril-forming peptides/proteins with diseases makes them primary disease-targets. Understanding the molecular interactions involved in the fibril formation becomes the foremost requirement to characterize the target. Interference with these interactions of ß-sheets in vitro prevents and sometimes reverses the fibril assembly. A small molecule capable of interfering with the formation of fibril could have therapeutic applications in these diseases. This anti-aggregation approach appears to be a viable treatment option. A search for such a molecule is pursued actively world over. All types of compounds and approaches to slow down or prevent the aggregation process have been described in the literature. These efforts are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

amyloid beta

AD:

Alzheimer’s disease

References

  • Adibhatla RM, Hatcher JF (2007) Role of lipids in brain injury and diseases. Future Lipidol 2:403–422

    Article  PubMed  CAS  Google Scholar 

  • Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–48

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H (1994) Inflammatory response in Alzheimer’s disease. Tohoku J Exp Med 174:295–303

    Article  PubMed  CAS  Google Scholar 

  • Andreotti G, Vitale RM, Avidan-Shpalter C, Amodeo P, Gazit E, Motta A (2011) Converting the highly amyloidogenic human calcitonin into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic analogue. J Biol Chem 286:2707–2718

    Article  PubMed  CAS  Google Scholar 

  • Andya JD, Hsu CC, Shire SJ (2003) Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS PharmSci 5:doi:10.1208/ps050210

    Google Scholar 

  • Attanasio F, Cascio C, Fisichella S, Nicoletti VG, Pignataro B, Savarino A, Rizzarelli E (2007) Trehalose effects on alpha-crystallin aggregates. Biochem Biophys Res Commun 354:899–905

    Article  PubMed  CAS  Google Scholar 

  • Avdulov NA, Chochina SV, Igbavboa U, Warden CS, Vassiliev AV, Wood WG (1997) Lipid binding to amyloid beta-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J Neurochem 69:1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, Buchanan SG, Buchanan MD, Batiyenko Y, Christopher JA, Emtage S, Eroshkina A, Feil I, Furlong EB, Gajiwala KS, Gao X, He D, Hendle J, Huber A, Hoda K, Kearins P, Kissinger C, Laubert B, Lewis HA, Lin J, Loomis K, Lorimer D, Louie G, Maletic M, Marsh CD, Miller I, Molinari J, Muller-Dieckmann HJ, Newman JM, Noland BW, Pagarigan B, Park F, Peat TS, Post KW, Radojicic S, Ramos A, Romero R, Rutter ME, Sanderson WE, Schwinn KD, Tresser J, Winhoven J, Wright TA, Wu L, Xu J, Harris TJ (2005) Structural analysis of a set of proteins resulting from a bacterial genomics project. Crystal structure of a stabilizer of iron transporter. Proteins 60:787–796

    Article  PubMed  CAS  Google Scholar 

  • Bastianet S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotectiveeffects of green and blackteas and their catechingallateestersagainstbeta-amyloid-inducedtoxicity. Eur J Neurosci 23:55–64

    Article  Google Scholar 

  • Baynes BM, Wang DIC, Trout BL (2005) Role of arginine in the stabilization of proteins against aggregation. Biochemistry 44:4919–4925

    Article  PubMed  CAS  Google Scholar 

  • Béranger F, Crozet C, Goldsborough A, Lehmann S (2008) Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage. Biochem Biophys Res Commun 374:44–48

    Article  PubMed  CAS  Google Scholar 

  • Bermejo-Bescós P, Martín-Aragón S, Jiménez-Aliaga KL, Ortega A, Molina MT, Buxaderas E, Orellana G, Csákÿ AG (2010) In vitro antiamyloidogenic properties of 1,4-naphthoquinones. Biochem Biophys Res Commun 400:169–174

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Teplow DB (2004) Rapid photochemical cross-linking—a new tool for studies of metastable, amyloidogenic protein assemblies. Acc Chem Res 37:357–364

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi B, Kumita JR, Barros TP, Esbjorner EK, Luheshi LM, Crowther DC, Wilson MR, Dobson CM, Favrin G, Yerbury JJ (2010) ANS binding reveals common features of cytotoxic amyloid species. ACS Chem Biol 5:735–740

    Article  PubMed  CAS  Google Scholar 

  • Bondos SE, Bicknell A (2003) Detection and prevention of protein aggregation before, during, and after purification. Analytical Biochemistry 316:223–231

    Article  PubMed  CAS  Google Scholar 

  • Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382

    Article  PubMed  CAS  Google Scholar 

  • Chang WE, Takeda T, Raman EP, Klimov DK (2010) Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Biophys J 98:2662–2670

    Article  PubMed  CAS  Google Scholar 

  • Chopra K, Misra S, Kuhad A (2011) Current perspectives on pharmacotherapy of Alzheimer’s disease. Expert Opin Pharmacother 12:335–350

    Article  PubMed  Google Scholar 

  • Cohen AS, Calkins E (1959) Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183:1202–1203

    Article  PubMed  CAS  Google Scholar 

  • Cruz M, Tusell JM, Grillo-Bosch D, Albericio F, Serratosa J, Rabanal F, Giralt E (2004) Inhibition of beta-amyloid toxicity by short peptides containing N-methyl amino acids. J Pept Res 63:324–328

    Article  PubMed  CAS  Google Scholar 

  • Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK, Pasha S, Mann A, Ganguli M, Verma AK, Bhat R, Chandrayan SK, Ahmed S, Sharma S, Kaur P, Singh TP, Srinivasan A,(2007b) Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. PLoS One 2:e1176

    Article  PubMed  CAS  Google Scholar 

  • Das U, Hariprasad G, Pasha S, Mann A, Ganguli M, Sharma S, Kaur P, Singh TP, Srinivasan A (2007a) Interface peptide of Alzheimer’s amyloid beta: application in purification. Biochem Biophys Res Commun 362:538–542

    Article  PubMed  CAS  Google Scholar 

  • De Bona P, Giuffrida ML, Caraci F, Copani A, Pignataro B, Attanasio F, Cataldo S, Pappalardo G, Rizzarelli E (2009) Design and synthesis of new trehalose-conjugated pentapeptides as inhibitors of Abeta(1-42) fibrillogenesis and toxicity. J Pept Sci 15:220–228

    Article  PubMed  CAS  Google Scholar 

  • Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A, Doglia SM, De Luigi A, Salmona M (2010) Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 40:424–431

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  • Dodatko T, Fedorov AA, Grynberg M, Patskovsky Y, Rozwarski DA, Jaroszewski L, Aronoff-Spencer E, Kondraskina E, Irving T, Godzik A, Almo SC (2004) Crystal structure of the actin binding domain of the cyclase-associated protein. Biochemistry 43:10628–10641

    Article  PubMed  CAS  Google Scholar 

  • Doig AJ, Hughes E, Burke RM, Su TJ, Heenan RK, Lu J (2002) Inhibition of toxicity and protofibril formation in the amyloid-beta peptide beta(25-35) using N-methylated derivatives. Biochem Soc Trans 30:537–542

    Article  PubMed  CAS  Google Scholar 

  • Dorgeret B, Khemt émourian L, Correia I, Soulier JL, Lequin O, Ongeri S (2011) Sugar-based peptidomimetics inhibit amyloid β-peptide aggregation. Eur J Med Chem 46:5959–5969

    Article  PubMed  CAS  Google Scholar 

  • Duff J, Davies P, Watt K, McEwan IJ (2006) Structural dynamics of the human androgen receptor: implications for prostate cancer and neurodegenerative disease. Biochem Soc Trans 34:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • El-Agnaf OM, Paleologou KE, Greer B, Abogrein AM, King JE, Salem SA, Fullwood NJ, Benson FE, Hewitt R, Ford KJ, Martin FL, Harriott P, Cookson MR, Allsop DA (2004) Strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J 18:1315–1317

    PubMed  CAS  Google Scholar 

  • Elbaum-Garfinkle S, Ramlall T, Rhoades E (2010) The role of the lipid bilayer in tau aggregation. Biophys J 98:2722–2730

    Article  PubMed  CAS  Google Scholar 

  • Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci USA 103:16248–16253

    Article  PubMed  CAS  Google Scholar 

  • Ferrao-Gonzales AD, Robbs BK, Moreau VH, Ferreira A, Juliano L, Valente AP, Almeida FC, Silva JL, Foguel D (2005) Controlling {beta}-amyloid oligomerization by the use of naphthalene sulfonates: trapping low molecular weight oligomeric species. J Biol Chem 280:34747–34754

    Article  PubMed  CAS  Google Scholar 

  • Findeis MA, Lee JJ, Kelley M, Wakefield JD, Zhang MH, Chin J, Kubasek W, Molineaux SM,(2001) Characterization of cholyl-leu-val-phe-phe-ala-OH as an inhibitor of amyloid beta-peptide polymerization. Amyloid 8:231–241

    Article  PubMed  CAS  Google Scholar 

  • Findeis MA, Musso GM, Arico-Muendel CC, Benjamin HW, Hundal AM, Lee JJ, Chin J, Kelley M, Wakefield J, Hayward NJ, Molineaux SM (1999) Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry 38:6791–6800

    Article  PubMed  CAS  Google Scholar 

  • Fong YH, Wong HC, Chuck CP, Chen YW, Sun H, Wong KB (2011) Assembly of the preactivation complex for urease maturation in Helicobacter pylori: crystal Structure of the UreF/UreH complex. J Biol Chem 286:43241–43249

    Article  PubMed  CAS  Google Scholar 

  • Funderburk SF, Marcellino BK, Yue Z (2010) Cell “self-eating” (autophagy) mechanism in Alzheimer’s disease. Mt Sinai J Med 77:59–68

    Article  PubMed  Google Scholar 

  • Geddes AJ, Parker KD, Atkins ED, Beighton E (1968) “Cross-β” conformation in proteins. J Mol Biol 32:343–358

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Colombo L, Girola L, Tagliavini F, Salmona M (2001) Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett 487:404–407

    Article  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575

    Article  PubMed  CAS  Google Scholar 

  • Golde TE, Schneider LS, Koo EH (2011) Anti-aß therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69:203–213

    Article  PubMed  CAS  Google Scholar 

  • Gordon DJ, Sciarretta KL, Meredith SC (2001) Inhibition of β-amyloid(40) fibrillogenesis and disassembly of β-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry 40:8237–8245

    Article  PubMed  CAS  Google Scholar 

  • Gordon DJ, Tappe R, Meredith SC (2002) Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Aβ1-40 fibrillogenesis. J Pept Res 60:37–55

    Article  PubMed  CAS  Google Scholar 

  • Green NM, Wrigley NG, Russell WC, Martin SR, McLachlan AD (1983) Evidence for a repeating cross-beta sheet structure in the adenovirus fibre. EMBO J 2:1357–1365

    PubMed  CAS  Google Scholar 

  • Guo JP, Yu S, McGeer PL (2010) Simple in vitro assays to identify amyloid-beta aggregation blockers for Alzheimer’s disease therapy. J Alzheimer’s Dis 19:1359–1370

    CAS  Google Scholar 

  • Gursky O, Aleshkov S (2000) Temperature-dependent beta-sheet formation in beta-amyloid Abeta(1-40) peptide in water: uncoupling beta-structure folding from aggregation. Biochem Biophys Acta 1476:93–102

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  • Han SH, Chang YJ, Jung ES, Kim JW, Na DL, Mook-Jung I (2010) Effective screen for amyloid ß aggregation inhibitor using amyloid ß-conjugated gold nanoparticles. Int J Nanomedicine 6:1–12

    Article  PubMed  CAS  Google Scholar 

  • Harkany T, Mulder J, Sasvari M, Abraham I, Konya C, Zarandi M, Penke B, Luiten PG, Nyakas C (1999) N-Methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity. Neurobiol Dis 6:109–121

    Article  PubMed  CAS  Google Scholar 

  • Harris JR (2002) In vitro fibrillogenesis of the amyloid beta 1-42 peptide: cholesterol potentiation and aspirin inhibition. Micron 33:609–626

    Article  PubMed  CAS  Google Scholar 

  • Harris JR (2008) Cholesterol binding to amyloid-beta fibrils: a TEM study. Micron 39:1192–1206

    Article  PubMed  CAS  Google Scholar 

  • Harris JR, Milton NG (2010) Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem 51:47–75

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease beta A4 peptides. J Mol Biol 228:460–473

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Geng M, Li J, Xin X, Wang J, Tang M, Zhang J, Zhang X, Ding J (2004) Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci 95:248–255

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci USA 106:20324–220329

    Article  PubMed  CAS  Google Scholar 

  • Hughes E, Burke RM, Doig AJ (2000) Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25-35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J Biol Chem 275:25109–25115

    Article  PubMed  CAS  Google Scholar 

  • Ihl R, Frölich L, Winblad B, Schneider L, Burns A, Möller HJ (2011) WFSBP task force on treatment guidelines for Alzheimer’s disease and other dementias. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of Alzheimer’s disease and other dementias. World J Biol Psychiatry 12:2–32

    Article  PubMed  Google Scholar 

  • Imaizumi K, Miyoshi K, Katayama T, Yoneda T, Taniguchi M, Kudo T, Tohyama M (2001) The unfolded protein response and Alzheimer’s disease. Biochim Biophys Acta 1536:85–96

    Article  PubMed  CAS  Google Scholar 

  • Izmitli A, Schebor C, McGovern MP, Reddy AS, Abbott NL, de Pablo JJ (2011) Effect of trehalose on the interaction of Alzheimer’s Aβ-peptide and anionic lipid monolayers. Biochim Biophys Acta 1808:26–33

    Article  PubMed  CAS  Google Scholar 

  • Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716

    Article  PubMed  CAS  Google Scholar 

  • Ji SR, Wu Y, Sui SF (2002) Study of the correlation of secondary structure of beta-amyloid peptide (Abeta40) with the hydrophobic exposure under different conditions. Gen Physiol Biophys 21:415–427

    PubMed  CAS  Google Scholar 

  • Jiang P, Li W, Shea JE, Mu Y (2011) Resveratrol inhibits the formation of multiple-layered β-sheet oligomers of the human islet amyloid polypeptide segment 22–27. Biophys J 100:1550–1558

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y, Yagi-Utsumi M, Yagi H, Kato K (2011) Structural and molecular basis of carbohydrate-protein interaction systems as potential therapeutic targets. Curr Pharm Des 17:1672–1684

    Article  PubMed  CAS  Google Scholar 

  • Kapurniotu A, Schmauder A, Tenidis K (2002) Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. J Mol Biol 315:339–350

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Headm E,Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG,(2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Google Scholar 

  • Kheterpal I, Zhou S, Cook KD, Wetzel R (2000) Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc Natl Acad Sci USA 97:13597–13601

    Article  PubMed  CAS  Google Scholar 

  • Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11:1505–1515

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Perneczky RJ (2011) Amyloid clearance as a treatment target against Alzheimer’s disease. J Alzheimer’s Dis 24 Suppl 2:61–73

    CAS  Google Scholar 

  • Kyle RA (2001) “Amyloidosis: a convoluted story”. Brit J Haem 114:529–538

    Google Scholar 

  • Ladiwala AR, Lin JC, Bale SS, Marcelino-Cruz AM, Bhattacharya M, Dordick JS, Tessier PM (2010) Resveratrol selectively remodels soluble oligomers and fibrils of amyloid abeta into off-pathway conformers. J Biol Chem 285:24228–32427

    Article  PubMed  CAS  Google Scholar 

  • Lanning JD, Hawk AJ, Derryberry J, Meredith SC (2010) Chaperone-like N-methyl peptide inhibitors of polyglutamine aggregation. Biochemistry 49:7108–7118

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Porat Y, Bacharach E, Shalev DE, Gazit E (2008) Phenolsulfonphthalein, but not phenolphthalein, inhibits amyloid fibril formation: implications for the modulation of amyloid self-assembly. Biochemistry 47:5896–58904

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Gurlo T, Kayed R, Butler AE, Haataja L, Glabe CG, Butler PC (2007) Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes 56:1324–1332

    Article  PubMed  CAS  Google Scholar 

  • Liu FF, Ji L, Dong XY, Sun Y (2009) Molecularinsight into the inhibitioneffect of trehalose on the nucleation and elongation of amyloidbeta-peptideoligomers. J Phys Chem B 113:11320–11329

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Barkhordarian H, Emadi S, Park CB, Sierks MR (2005) Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis 20:74–81

    Article  PubMed  CAS  Google Scholar 

  • Lu JH, Ardah MT, Durairajan SS, Liu LF, Xie LX, Fong WF, Hasan MY, Huang JD, El-Agnaf OM, Li M (2011) Baicalein inhibits formation of α-synuclein oligomers within living cells and prevents Aβ peptide fibrillation and oligomerisation. Chembiochem. 12:615–624

    Google Scholar 

  • Malmo C, Vilasi S, Iannuzzi C, Tacchi S, Cametti C, Irace G, Sirangelo I (2006) Tetracycline inhibits W7FW14F apomyoglobin fibril extension and keeps the amyloid protein in a pre-fibrillar, highly cytotoxic state. FASEB J 20:346–347

    PubMed  CAS  Google Scholar 

  • Martineau E, de Guzman JM, Rodionova L, Kong X, Mayer PM, Aman AM (2010) Investigation of the noncovalent interactions between anti-amyloid agents and amyloid beta peptides by ESI-MS. J Am Soc Mass Spectrom 21:1506–1514

    Article  PubMed  CAS  Google Scholar 

  • Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert A amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233

    Article  PubMed  CAS  Google Scholar 

  • Matharu B, El-Agnaf O, Razvi A, Austen BM (2010) Development of retro-inverso peptides as anti-aggregation drugs for β-amyloid in Alzheimer’s disease. Peptides 31:1866–1872

    Article  PubMed  CAS  Google Scholar 

  • Matharu B, Gibson G, Parsons R, Huckerby TN, Moore SA, Cooper LJ, Millichamp R, Allsop D, Austen B (2009) Galantamine inhibits beta-amyloid aggregation and cytotoxicity. J Neurol Sci 280:49–58

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Franklin T, Chakrabartty A, Fraser PE (1998) Phosphatidylinositol and inositolinvolvement in Alzheimeramyloid-betafibrilgrowth and arrest. J Mol Biol 278:183–194

    Article  PubMed  CAS  Google Scholar 

  • McMillan DR, Gething MJ, Sambrook J (1994) The cellular response to unfolded proteins: intercompartmental signaling. Curr Opin Biotechnol 5:540–545

    Article  PubMed  CAS  Google Scholar 

  • Menéndez-González M, Pérez-Piñera P, Martínez-Rivera M, Muñiz AL, Vega JA (2011) Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 17:508–520

    Article  PubMed  Google Scholar 

  • Miura Y, Yasuda K, Yamamoto K, Koike M, Nishida Y, Kobayashi K (2007) Inhibition of Alzheimer amyloid aggregation with sulfated glycopolymers. Biomacromolecules 8:2129–2134

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817

    Article  PubMed  CAS  Google Scholar 

  • Muckle TJ, Roy JR (1985) High-density lipoprotein cholesterol in differential diagnosis of senile dementia. Lancet 1:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282:10311–10324

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004a) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  CAS  Google Scholar 

  • Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M (2004b) Vitamin A exhibits potent antiamyloidogenic and fibril-destabilizing effects in vitro. Exp Neurol 189:380–392

    Article  CAS  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  PubMed  CAS  Google Scholar 

  • Permanne B, Adessi C, Saborio GP, Fraga S, Frossard MJ, Dewachter I, Van Dorpe J, Banks WA, Van Leuven F, Soto C (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a beta-sheet breaker peptide. FASEB J 16:860–862

    PubMed  CAS  Google Scholar 

  • Potter KJ, Scrocchi LA, Warnock GL, Ao Z, Younker MA, Rosenberg L, Lipsett M, Verchere CB, Fraser PE (2009) Amyloid inhibitors enhance survival of cultured human islets. Biochim Biophys Acta 1790:566–574

    Article  PubMed  CAS  Google Scholar 

  • Rafii MS, Aisen PS (2009) Recent developments in Alzheimer’s disease therapeutics. BMC Medicine 7:7

    Article  PubMed  Google Scholar 

  • Ran C, Zhao W, Moir RD, Moore A (2011) Non-conjugated small molecule FRET for Differentiating monomers from higher molecular weight amyloid beta species. PLoS One 6:e19362

    Article  PubMed  CAS  Google Scholar 

  • Richard T, Poupard P, Nassra M, Papastamoulis Y, Iglésias ML, Krisa S, Waffo-Teguo P, Mérillon JM, Monti JP (2011) Protective effect of e-viniferin on ß-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg Med Chem 19:3152–3155

    Article  PubMed  CAS  Google Scholar 

  • Ritter C, Maddelein ML, Siemer AB, Lührs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  PubMed  CAS  Google Scholar 

  • Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  PubMed  CAS  Google Scholar 

  • Ryu J, Kanapathipillai M, Lentzen G, Park CB (2008) Inhibition of beta-amyloid peptide aggregation and neurotoxicity by alpha-d-mannosylglycerate, a natural extremolyte. Peptides 29:578–584

    Article  PubMed  CAS  Google Scholar 

  • Salloway S, Sperling R, Keren R, Porsteinsson AP, van Dyck CH, Tariot PN, Gilman S, Arnold D, Abushakra S, Hernandez C, Crans G, Liang E, Quinn G, Bairu M, Pastrak A, Cedarbaum JM (2011) ELND005-AD201 Investigators. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 77:1253–1262

    Article  PubMed  CAS  Google Scholar 

  • Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-ß spines reveal varied steric zippers. Nature 447:453–457

    Article  PubMed  CAS  Google Scholar 

  • Shaltiel-Karyo R, Frenkel-Pinter M, Egoz-Matia N, Frydman-Marom A, Shalev DE, Segal D, Gazit E (2010) Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson’s disease model flies. PLoS One 5:e13863

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski C, Chapman R, Walter P (1998) The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol 8:245–249

    Article  PubMed  CAS  Google Scholar 

  • Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98

    Article  PubMed  CAS  Google Scholar 

  • Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ, Westermark P (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the international society of amyloidosis. Amyloid 17:101–104

    Article  PubMed  CAS  Google Scholar 

  • Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun 226:672–680

    Article  PubMed  CAS  Google Scholar 

  • Soto-Ortega DD, Murphy BP, Gonzalez-Velasquez FJ, Wilson KA, Xie F, Wang Q, Moss MA,(2011) Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg Med Chem 19:2596–2602

    Article  PubMed  CAS  Google Scholar 

  • Stravalaci M, Beegm M, Salmona M, Gobbi M (2011) Use of surface plasmon resonance to study the elongation kinetics and the binding properties of the highly amyloidogenic Aβ(1-42) peptide, synthesized by depsi-peptide technique. Biosens Bioelectron 26:2772–2775

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Zhang G, Hawkes CA, Shaw JE, McLaurin J, Nitz M (2008) Synthesis of scyllo-inositol derivatives and their effects on amyloid beta peptide aggregation. Bioorg Med Chem 16:7177–7184

    Article  PubMed  CAS  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini F, McArthur RA, Canciani B, Giaccone G, Porro M, Bugiani M, Lievens PM, Bugiani O, Peri E, Dall’Ara P, Rocchi M, Poli G, Forloni G, Bandiera T, Varasi M, Suarato A, Cassutti P, Cervini MA, Lansen J, Salmona M, Post C (1997) Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N,(2004) Trehalose alleviates polyglutamine-mediated in a mouse model of Huntington disease. Nature Med 10:148–154

    Article  PubMed  CAS  Google Scholar 

  • Tatarek-Nossol M, Yan LM, Schmauder A, Tenidis K, Westermark G, Kapurniotu A (2005) Inhibition of MAPP amyloid-fibril formation and apoptotic cell death by a designed MAPP amyloid-core-containing hexapeptide. Chem Biol 12:797–809

    Article  PubMed  CAS  Google Scholar 

  • Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A (2000) Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J Mol Biol 295:1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5:121–142

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Nadackal TG, Thomas K (2001) Aspirin and non-steroidal anti-inflammatory drugs inhibit amyloid-beta aggregation. Neuroreport 12:3263–3267

    Article  PubMed  CAS  Google Scholar 

  • Tjernberg LO, Naslund J, Lindqvist F, Johansson J, Karlstrom AR, Thyberg J, Terenius L, Nordstedt C (1996) Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271:8545–8548

    Article  PubMed  CAS  Google Scholar 

  • Tjernberg LO, Lilliehook C, Callaway DJ, Naslund J, Hahne S, Thyberg J, Terenius L, Nordstedt C (1997) Controlling amyloid beta-peptide fibril formation with protease-stable ligands. J Biol Chem 272:12601–12605

    Article  PubMed  CAS  Google Scholar 

  • Tokuraku K, Marquardt M, Ikezu T (2009) Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS ONE 4:e8492

    Article  PubMed  CAS  Google Scholar 

  • Török M, Milton S, Kayed R, Wu P, McIntire T, Glabe CG, Langen R (2002) Structural and dynamic features of Alzheimer’s A peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277:40810–40815

    Article  PubMed  CAS  Google Scholar 

  • Viet MH, Ngo ST, Lam NS, Li MS (2011) Inhibition of aggregation of amyloid peptides by Beta-sheet breaker peptides and their binding affinity. J Phys ChemB 115:7433–7446

    Article  CAS  Google Scholar 

  • Virchow R (1971) Lecture XVII. Amyloid degeneration.Inflammation. In: Cellular pathology as based upon physiological and pathological histology. Dover Publications, New York, pp. 409–437 (translated from the second German edition by Frank Charles)

    Google Scholar 

  • Volles MJ, Lansbury PT Jr (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42:7871–7878

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, Humala N, Teplow DB, Pasinetti GM (2008) Grape-derived polyphenolics prevent abeta oligomerization and attenuate cognitive deterioration in a mousemodel of Alzheimer’s disease. J Neurosci 28:6388–6392

    Article  PubMed  CAS  Google Scholar 

  • Westermark P (2005) Aspects on human amyloid forms and their fibril polypeptides. FEBS J 272:5942–5949

    Article  PubMed  CAS  Google Scholar 

  • Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2005) Nomenclature committee of the international society of amyloidosis. Amyloid: toward terminology clarification. Report from the nomenclature committee of the international society of amyloidosis. Amyloid 12:1–4

    Article  PubMed  CAS  Google Scholar 

  • Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2007) A primer of amyloid nomenclature. Amyloid 14:179–183

    Article  PubMed  CAS  Google Scholar 

  • Wiesehan K, Buder K, Linke RP, Patt S, Stoldt M, Unger E, Schmitt B, Bucci E, Willbold D (2003) Selection of D-amino-acid peptides that bind to Alzheimer’s disease amyloid peptide abeta1-42 by mirror image phage display. Chembiochem 4:748–753

    Article  PubMed  CAS  Google Scholar 

  • Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R (2004) Mapping A amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 335:833–842

    Article  PubMed  CAS  Google Scholar 

  • Wood SJ, MacKenzie L, Maleeff B, Hurle MR, Wetzel R (1996) Selective inhibition of abeta fibril formation. J Biol Chem 271:4086–4092

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki M, Li W, Johnson DJ, Huntington JA (2010) Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455:1255–1258

    Article  CAS  Google Scholar 

  • Yan LM, Tatarek-Nossol M, Velkova A, Kazantzis A, Kapurniotu A (2006) Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis. Proc Natl Acad Sci USA 103:2046–2051

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  • Yerbury JJ, Poon S, Meehan S, Thompson B, Kumita JR, Dobson CM, Wilson MR (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J 21:2312–2322

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagiri Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Srinivasan, A. (2012). Experimental Inhibition of Peptide Fibrillogenesis by Synthetic Peptides, Carbohydrates and Drugs. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_12

Download citation

Publish with us

Policies and ethics