Skip to main content

Fibrillogenesis of Huntingtin and Other Glutamine Containing Proteins

  • Chapter
  • First Online:
Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 65))

Abstract

This chapter focuses on the aggregation of glutamine containing peptides and proteins with an emphasis on huntingtin protein, whose aggregation leads to the development of Huntington’s disease. The kinetics that leads to the formation of amyloids, the structure of aggregates of various types and the morphological mechanical properties of amyloid fibrils are described. The kinetics of amyloid fibril formation has been proposed to follow a nucleation dependent polymerization model, dependent upon the size of the nucleus. This model and the effect of the polyglutamine length on the nucleus size are reviewed. Aggregate structure is characterized at two different levels. The atomic-scale resolution structure of fibrillar and crystalline aggregates of polyglutamine containing proteins and peptides was determined by X-ray crystallography and solid-state nuclear magnetic resonance (NMR). The chapter outlines the results obtained by both these techniques. Atomic force microscopy (AFM) was instrumental in elucidating the morphology of fibrils, their organization and assembly. The chapter also discusses the high stability of amyloid fibrils, including their mechanical properties as revealed by AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Htt:

Huntingtin protein

Aβ:

Amyloid-beta

AFM:

Atomic Force Microscopy

NMR:

Nuclear magnetic resonance

EPR:

Electron paramagnetic resonance

References

  • Baxa U, Cheng N, Winkler DC, Chiu TK, Davies DR, Sharma D, Inouye H, Kirschner DA, Wickner RB, Steven AC (2005) Filaments of the Ure2p prion protein have a cross-beta core structure. J Struct Biol 150:170–179

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Wickner RB, Steven AC, Anderson DE, Marekov LN, Yau W-M, Tycko R (2007) Characterization of beta-sheet structure in Ure2p1–89 yeast prion fibrils by solid-state nuclear magnetic resonance. Biochemistry 46:13149–13162

    Article  PubMed  CAS  Google Scholar 

  • Bernacki JP, Murphy RM (2009) Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 96:2871–2887

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, Creamer TP, Wetzel R (2006) Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 355:524–535

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya AM, Thakur AK, Wetzel R (2005) Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc Natl Acad Sci USA 102:15400–15405

    Article  PubMed  CAS  Google Scholar 

  • Chan JCC, Oyler NA, Yau W-M, Tycko R (2005) Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44:10669–10680

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Berthelier V, Hamilton JB, O’Nuallain B, Wetzel R (2002a) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41:7391–7399

    Article  CAS  Google Scholar 

  • Chen S, Ferrone FA, Wetzel R (2002b) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 99:11884–11889

    Article  CAS  Google Scholar 

  • Dahlgren PR, Karymov MA, Bankston J, Holden T, Thumfort P, Ingram VM, Lyubchenko YL (2005) Atomic force microscopy analysis of the Huntington protein nanofibril formation. Nanomedicine 1:52–57

    Article  PubMed  CAS  Google Scholar 

  • De Baere I, Liu L, Moens L, Van Beeumen J, Gielens C, Richelle J, Trotman C, Finch J, Gerstein M, Perutz M (1992) Polar zipper sequence in the high-affinity hemoglobin of Ascaris suum: amino acid sequence and structural interpretation. Proc Natl Acad Sci USA 89:4638–4642

    Article  PubMed  Google Scholar 

  • Der-Sarkissian A, Jao CC, Chen J, Langen R (2003) Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535

    Article  PubMed  CAS  Google Scholar 

  • Digambaranath JL, Campbell TV, Chung A, McPhail MJ, Stevenson KE, Zohdy MA, Finke JM (2011) An accurate model of polyglutamine. Proteins 79:1427–1440

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (2004a) Experimental investigation of protein folding and misfolding. Methods 34:4–14

    Article  CAS  Google Scholar 

  • Dobson CM (2004b) Principles of protein folding, misfolding and aggregation. Semin. Cell Dev Biol 15:3–16

    Article  CAS  Google Scholar 

  • Dong J, Castro CE, Boyce MC, Lang MJ, Lindquist S (2010) Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nat Struct Mol Biol 17:1422–1430

    Article  PubMed  CAS  Google Scholar 

  • Dougan L, Li J, Badilla CL, Berne BJ, Fernandez JM (2009) Single homopolypeptide chains collapse into mechanically rigid conformations. Proc Natl Acad Sci USA 106:12605–12610

    Article  PubMed  CAS  Google Scholar 

  • Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    Article  PubMed  CAS  Google Scholar 

  • Flory P (1953) Principles of Polymer Chemistry. Cornell University Press, New York

    Google Scholar 

  • Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genetics 6:743–755

    Article  CAS  Google Scholar 

  • Gillian B (2003) Huntingtin aggregation and toxicity in Huntington’s disease. The Lancet 361:1642–1644

    Article  Google Scholar 

  • Glabe CG (2004) Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem Sci 29:542–547

    Article  PubMed  CAS  Google Scholar 

  • Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191

    Article  PubMed  CAS  Google Scholar 

  • Gusella JF, MacDonald ME (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat rev Neurosci 1:109–115

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter J, Ross PD, Eaton WA (1974) Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci USA 71:4864–4868

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Kajava AV, Baxa U, Wickner RB, Steven AC (2004) A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc Natl Acad Sci USA 101:7885–7890

    Article  PubMed  CAS  Google Scholar 

  • Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R (2011) Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 18:328–336

    Article  PubMed  CAS  Google Scholar 

  • Karsai A, Nagy A, Kengyel A, Martonfalvi Z, Grama L, Penke B, Kellermayer MS (2005) Effect of lysine-28 side-chain acetylation on the nanomechanical behavior of alzheimer amyloid beta25–35 fibrils. J Chem Inf Model 45:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Grama L, Karsai A, Nagy A, Kahn A, Datki ZL, Penke B (2005) Reversible mechanical unzipping of amyloid beta-fibrils. J Biol Chem 280:8464–8470

    Article  PubMed  CAS  Google Scholar 

  • Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I (2009) Secondary structure of Huntingtin amino-terminal region. Structure 17:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Knowles TP, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nature nanotechnology 6:469–479

    Article  PubMed  CAS  Google Scholar 

  • Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318:1900–1903

    Article  PubMed  CAS  Google Scholar 

  • Kryndushkin DS, Wickner RB, Tycko R (2011) The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid-state NMR. J. Mol. Biol 409:263–277

    Article  CAS  Google Scholar 

  • Krzewska J, Tanaka M, Burston SG, Melki R (2007) Biochemical and functional analysis of the assembly of full-length Sup35p and its prion-forming domain. J Biol Chem 282:1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski J.z.R, Van Der Wel PCA, Rigney M, Grigorieff N, Griffin RG (2011) Structural Complexity of a Composite Amyloid Fibril. J Am Chem Soc 133:14686–14698

    Article  PubMed  CAS  Google Scholar 

  • Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schütz A, Meier BH, Melki R, Böckmann A (2009) Prion fibrils of Ure2p assembled under physiological conditions contain highly ordered, natively folded modules. Journal of Molecular Biology 394:108–118

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Weers B, Stellwagen NC (2001) DNA persistence length revisited. Biopolymers 61:261–275

    Article  PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A (1995) Atomic force microscopy of nucleoprotein complexes. Scanning Microsc 9:705–724, discussion 724–707

    PubMed  CAS  Google Scholar 

  • Lyubchenko YL, Sherman S, Shlyakhtenko LS, Uversky VN (2006) Nanoimaging for protein misfolding and related diseases. J Cell Biochem 99:52–70

    Article  PubMed  Google Scholar 

  • Lyubchenko YL, Kim BH, Krasnoslobodtsev AV, Yu J (2010) Nanoimaging for protein misfolding diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:526–543

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Nussinov R (2002) Stabilities and conformations of Alzheimer’s beta -amyloid peptide oligomers (Abeta 16–22, Abeta 16–35, and Abeta 10–35): Sequence effects. Proc Natl Acad Sci USA 99:14126–14131

    Article  PubMed  CAS  Google Scholar 

  • MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf A-M, Lehrach H, Buckler AJ, Church D, Doucette-Stamm L, O’Donovan MC, Riba-Ramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys 41:265–297

    Article  PubMed  CAS  Google Scholar 

  • McAllister C, Karymov MA, Kawano Y, Lushnikov AY, Mikheikin A, Uversky VN, Lyubchenko YL (2005) Protein interactions and misfolding analyzed by AFM force spectroscopy. J Mol Biol 354:1028–1042

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    Article  PubMed  CAS  Google Scholar 

  • Mostaert A, Crockett R, Kearn G, Cherny I, Gazit E, Serpell L, Jarvis S (2009) Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy. Arch Histol Cytol 72:199–207

    Article  Google Scholar 

  • Mostaert AS, Higgins MJ, Fukuma T, Rindi F, Jarvis SP (2006) Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J biol Phys 32:393–401

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  • Ngo S, Gu L, Guo Z (2011) Hierarchical organization in the amyloid core of yeast prion protein ure2. J Biol Chem 286:29691–29699

    Article  PubMed  CAS  Google Scholar 

  • O’Nuallain B, Wetzel R (2002) Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 99:1485–1490

    Article  PubMed  Google Scholar 

  • Ogawa H, Nakano M, Watanabe H, Starikov EB, Rothstein SM, Tanaka S (2008) Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Comput Biol Chem 32:102–110

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1995) Glutamine repeats as polar zippers: their role in inherited neurodegenerative disease. Mol Med 1:718–721

    PubMed  CAS  Google Scholar 

  • Perutz MF, Staden R, Moens L, De Baere I (1993) Polar zippers. Curr Biol 3:249–253

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91:5355–5358

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Windle AH (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Finch JT, Berriman J, Lesk A (2002) Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99:5591–5595

    CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  PubMed  CAS  Google Scholar 

  • Robertson AL, Bate MA, Androulakis SG, Bottomley SP, Buckle AM (2011) PolyQ: a database describing the sequence and domain context of polyglutamine repeats in proteins. Nucleic Acids Res 39:D272–D276

    Article  PubMed  Google Scholar 

  • Rojas AV, Liwo A, Scheraga HA (2011) A Study of the alpha-Helical Intermediate Preceding the Aggregation of the Amino-Terminal Fragment of the beta Amyloid Peptide (Abeta(1–28)). J Phys Chem B 115:12978–12983

    Article  PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457

    Article  PubMed  CAS  Google Scholar 

  • Scherzinger, E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96:4604–4609

    Article  PubMed  CAS  Google Scholar 

  • Schneider R, Schumacher MC, Mueller H, Nand D, Klaukien V, Heise H, Riedel D, Wolf G, Behrmann E, Raunser S, Seidel R, Engelhard M, Baldus M (2011) Structural characterization of polyglutamine fibrils by solid-state NMR spectroscopy. J Mol Biol 412:121–136

    Article  PubMed  CAS  Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Sherman DR, Kloek aP, Krishnan BR, Guinn B, Goldberg DE (1992) Ascaris hemoglobin gene: plant-like structure reflects the ancestral globin gene. Proc Natl Acad Sci USA 89:11696–11700

    Article  PubMed  CAS  Google Scholar 

  • Sikorski P, Atkins E (2005) New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6:425–432

    Article  PubMed  CAS  Google Scholar 

  • Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103:15806–15811

    Article  PubMed  CAS  Google Scholar 

  • Stork M, Giese A, Kretzschmar HA, Tavan P (2005) Molecular dynamics simulations indicate a possible role of parallel beta-helices in seeded aggregation of poly-Gln. Biophys J 88:2442–2451

    Article  PubMed  CAS  Google Scholar 

  • Straub JE, Thirumalai D (2011) Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Ann Rev Phys Chem 62:437–463

    Article  CAS  Google Scholar 

  • Stromer T, Serpell LC (2005) Structure and morphology of the Alzheimer’s amyloid fibril. Microsc Res Tech 67:210–217

    Article  PubMed  CAS  Google Scholar 

  • Sweers K, Van Der Werf K, Bennink M, Subramaniam V (2011) Nanomechanical properties of alpha-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Res Lett 6:270

    Article  PubMed  CAS  Google Scholar 

  • Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, Poirier MA, Frydman J (2009) The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 16:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Thakur AK, Wetzel R (2002) Mutational analysis of the structural organization of polyglutamine aggregates. Proc Natl Acad Sci USA 99:17014–17019

    Article  PubMed  CAS  Google Scholar 

  • Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, Anjum DH, Kodali R, Creamer TP, Conway JF, Gronenborn AM, Wetzel R (2009) Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nature structural & molecular biology 16:380–389

    Google Scholar 

  • Tycko R (2003) Insights into the amyloid folding problem from solid-state NMR. Biochemistry 42:3151–3159

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  PubMed  CAS  Google Scholar 

  • Van Der Wel PCA, Lewandowski JR, Griffin RG (2007) Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J Am Chem Soc 129:5117–5130

    Article  PubMed  CAS  Google Scholar 

  • Van Der Wel PCA, Lewandowski JR, Griffin RG (2010) Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 49:9457–9469

    Article  PubMed  CAS  Google Scholar 

  • Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775

    Article  PubMed  Google Scholar 

  • Van Den Akker CC, Engel MFM, Velikov KP, Bonn M, Koenderink GH (2011) Morphology and Persistence Length of Amyloid Fibrils Are Correlated to Peptide Molecular Structure. J Am Chem Soc 133:18030–18033

    Article  CAS  Google Scholar 

  • Venkatraman J, Shankaramma SC, Balaram P (2001) Design of folded peptides. Chemical reviews 101:3131–3152

    Article  PubMed  CAS  Google Scholar 

  • Vitalis A, Wang X, Pappu RV (2007) Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories. Biophysical journal 93:1923–1937

    Article  PubMed  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s disease. Lancet 369:218–228

    Article  PubMed  CAS  Google Scholar 

  • Walters RH, Murphy RM (2009) Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. Journal of molecular biology 393:978–992

    Article  PubMed  CAS  Google Scholar 

  • Walters RH, Murphy RM (2011) Aggregation kinetics of interrupted polyglutamine peptides. J Mol Biol 412:505–519

    Article  PubMed  CAS  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  PubMed  CAS  Google Scholar 

  • Yang L, He HY, Zhang XJ (2002) Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res 42:261–268

    Article  PubMed  CAS  Google Scholar 

  • Zanuy D, Gunasekaran K, Lesk AM, Nussinov R (2006) Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices. J Mol Biol 358:330–345

    Article  PubMed  CAS  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Institutes of Health Grants (1P01GM091743–01A1 and 1 R01 GM096039-01A1), U.S. Department of Energy Grant DE-FG02-08ER64579, National Science Foundation (EPS—1004094) and the Nebraska Research Initiative grant to Y.L.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri L. Lyubchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lyubchenko, Y., Krasnoslobodtsev, A., Luca, S. (2012). Fibrillogenesis of Huntingtin and Other Glutamine Containing Proteins. In: Harris, J. (eds) Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease. Subcellular Biochemistry, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5416-4_10

Download citation

Publish with us

Policies and ethics